551 research outputs found

    Continuous Centrifuge Decelerator for Polar Molecules

    Full text link
    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3_3F, CF3_3H, and CF3_3CCH, with input velocities of up to 200 m s−1200\,\rm{m\,s^{-1}} to obtain beams with velocities below 15 m s−115\,\rm{m\,s^{-1}} and intensities of several 109 mm−2 s−110^9\,\rm{mm^{-2}\,s^{-1}}. The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.Comment: 5 pages, 4 figures; version accepted for publication in PR

    INVESTIGATION OF THE RETROGRADATION OF AMYLOSE

    Get PDF

    THE MECHANISM OF THE RETROGRADATION OF AMYLOSE

    Get PDF

    DIE VERKLEISTERUNG DER STÄRKEKÖRNER

    Get PDF

    Why Do Only Some Galaxy Clusters Have Cool Cores?

    Full text link
    Flux-limited X-ray samples indicate that about half of rich galaxy clusters have cool cores. Why do only some clusters have cool cores while others do not? In this paper, cosmological N-body + Eulerian hydrodynamic simulations, including radiative cooling and heating, are used to address this question as we examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. These adaptive mesh refinement simulations produce both CC and NCC clusters in the same volume. They have a peak resolution of 15.6 h^{-1} kpc within a (256 h^{-1} Mpc)^3 box. Our simulations suggest that there are important evolutionary differences between CC clusters and their NCC counterparts. Many of the numerical CC clusters accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CC's survived the collisions. By contrast, NCC clusters experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevented CC re-formation. As a result, our simulations predict observationally testable distinctions in the properties of CC and NCC beyond the core regions in clusters. In particular, we find differences between CC versus NCC clusters in the shapes of X-ray surface brightness profiles, between the temperatures and hardness ratios beyond the cores, between the distribution of masses, and between their supercluster environs. It also appears that CC clusters are no closer to hydrostatic equilibrium than NCC clusters, an issue important for precision cosmology measurements.Comment: 17 emulateapj pages, 17 figures, replaced with version accepted to Ap

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661
    • …
    corecore