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a b s t r a c t

Diffusion models with constant boundaries and constant drift function have been successfully applied
to model phenomena in a wide range of areas in psychology. In recent years, more complex models
with time-dependent boundaries and space-time-dependent drift functions have gained popularity.
One obstacle to the empirical and theoretical evaluation of these models is the lack of simple and
efficient numerical algorithms for computing their first-passage time distributions. In the present work
we use a known series expansion for the first-passage time distribution for models with constant
drift function and constant boundaries to simplify the Kolmogorov backward equation for models
with time-dependent boundaries and space-time-dependent drift functions. We show how a simple
Crank–Nicolson scheme can be used to efficiently solve the simplified equation.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Diffusion models have been introduced in psychology to ac-
ount for behavioural data from two-alternative forced choice
asks. Over the last four decades these models have been applied
o numerous domains, including perceptual decision-making (Bo-
acz et al., 2006; Ratcliff, 2002; Smith et al., 2014, 2004), multi-
ensory decision-making (Diederich, 1995; Nidiffer et al., 2018),
emory retrieval (McKoon & Ratcliff, 1996; Starns, 2014; White
t al., 2014), lexical decision-making (Ratcliff et al., 2004; Wa-
enmakers et al., 2008; Yap et al., 2015), and neurophysiology
Churchland et al., 2008; Kühn et al., 2011; Philiastides, 2006;
urcell et al., 2010). Much of this success of diffusion models is
ue to their ability to simultaneously account for the complete
istribution of observed response times and accuracies.
Diffusion models describe the process by which a decision

aker chooses between two response options as a one-
imensional bounded diffusion process. Each decision boundary
orresponds to one of the two response options. The response
ime and decision outcome are determined by the first-passage
f the process at one of the two boundaries. Hence, in order to
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E-mail addresses: u.bohm@uva.nl (U. Boehm), s.g.cox@uva.nl (S. Cox),

.gantner@uva.nl (G. Gantner), r.p.stevenson@uva.nl (R. Stevenson).
1 Authors are listed in alphabetical order.
2 GG was supported by the Austrian Science Fund (FWF) under grant J4379-N.
ttps://doi.org/10.1016/j.jmp.2021.102613
022-2496/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
fit a diffusion model to data, researchers need to compute the
first-passage time distributions at both boundaries.

In many classical models the drift of the diffusion process
is assumed to have a simple form and the decision boundaries
are assumed to be constant over time. For these models sim-
ple numerical approximation schemes or series expansion for
first-passage time distribution can be found (e.g., Diederich &
Busemeyer, 2003; Ratcliff, 1978; Voss & Voss, 2008). Motivated
by misfits between classical models and behavioural data from
primates, several authors have suggested diffusion models with
more complex drift functions and time-dependent boundaries
(e.g., Churchland et al., 2008; Ditterich, 2006a, 2006b; Drugow-
itsch et al., 2012; see Boehm et al., 2016 for a review). One ob-
stacle to wider application and empirical testing of these models
is the difficulty in computing the first-passage time distribution
Hawkins et al. (2015).

In this article we extend and improve the approach intro-
duced by Voss and Voss (2008) to calculate the distribution of
the first-passage time for general diffusion processes. Voss and
Voss (2008) numerically solve a Fokker–Planck partial differential
equation (PDE) that arises as the backward Kolmogorov equation
for the distribution function of the first-passage time of the
Ratcliff (1978) diffusion model, that is, a model involving constant
boundaries, drift, and diffusion. This approach can also be applied
to diffusion models with time and space-dependent drift and
time-dependent boundaries. More specifically, the distribution
function of the first passage time in a given (fixed) time point

and for a range of starting points is given by the solution to a

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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okker–Planck equation. This is explained in detail in Section 2
elow.
Voss and Voss (2008) use a Crank–Nicolson/finite difference

cheme to numerically solve their Fokker–Planck equation. While
his approach is reasonably efficient, it does lead to a large ap-
roximation error for small response times. This is the con-
equence of a discontinuity between the initial data and the
oundary conditions in the Fokker–Planck PDE. We overcome this
roblem by first subtracting a known function that satisfies the
ame initial and boundary conditions from the solution to the
DE, which results in a PDE for the difference function with ho-
ogeneous (i.e., well-behaved) initial- and boundary conditions,
ee Section 3.2 for details. However, in order to be able to subtract
uch a known function, we first need to transform the Fokker–
lanck PDE to a rectangular domain: indeed, we use that the
eries expansion of the solution to the Fokker–Planck PDE with
onstant drift on a rectangular domain and prescribed initial- and
oundary conditions is known. The transformation is described
n Section 3.1. What remains after the transformation and sub-
raction is a Fokker–Planck PDE on a rectangular domain with
omogeneous boundary- and initial conditions. In Section 3.3,
e explain how to solve this PDE numerically by means of a
rank–Nicolson/finite difference scheme (i.e., we apply the same
umerical scheme as Voss and Voss (2008), but to a ‘nicer’ PDE).
inally, in Section 4, we use the approach outlined above to cal-
ulate the distribution function of the first passage time for three
ifferent models: the Ornstein–Uhlenbeck model, a model with
rgency signal, and a model with collapsing boundaries. The nu-
erical experiments confirm that the error for the approximate
istribution functions of the first passage time is lower when
sing our procedure of first reducing to a Fokker–Planck PDE with
omogeneous boundary conditions instead of numerically solving
he original Fokker–Planck PDE.

Various other approaches for calculating the distribution and
ensity of the first passage time have been considered in the liter-
ture. For example, several authors suggested using simulation-
ased methods (e.g., Brandon & Sederberg, 2014; Fengler et al.,
020; Radev et al., 2020; Wood, 2010). These methods use large
ynthetic data sets to approximate the first-passage time distri-
ution. Fengler et al. (2020) and Radev et al. (2020), for instance,
uggest training deep neural networks on simulated data to learn
he functional relationship between data and the correspond-
ng first-passage time distribution. While such simulation-based
ethods can be applied to a wide range of models, they also
ome with two disadvantages. Firstly, the computational costs of
imulating large data sets are often prohibitive and require ex-
ensive computational infrastructure. Secondly, there are often no
heoretical results available on the approximation error between
he true and estimated first-passage time distribution (Fengler
t al., 2020; Turner & Van Zandt, 2018).
A different approach to computing the first-passage time dis-

ribution relies on numerically approximating the distribution
unction. A first method using integral equations was introduced
y Smith (2000), based on the work by Buonocore et al. (1990)
nd Buonocore et al. (1987). By exploiting the Markov property
f the diffusion process, the first-passage time density can be

expressed as the solution to an integral equation, which can be
approximated by numerical integration. Buonocore et al. (1987)
introduced a transformation for the integral equation for which
the numerical integrals can be shown to converge to the first-
passage time density as the step size of the numerical integration
scheme decreases to zero. In addition to provable convergence,
the integral equation method also provides sufficient flexibility
for most psychological applications; the method can be applied
to models with time-dependent boundaries and time and space-

dependent drift functions. One disadvantage of the method is

2

that the first-passage time density can only be computed for one
value of the starting point of the diffusion process at a time. Since
in practical applications the starting point is typically treated as
a model parameter that needs to be estimated from the data,
the integral equation needs to be solved repeatedly, once for
each candidate value of the starting point. Moreover, Buonocore
et al. (1987) mention that for the models discussed in their work
(i.e., a model with constant drift and diffusion function and the
Ornstein–Uhlenbeck model), computing time grows quadratically
with the number of discretisation points in the numerical integra-
tion scheme. In the method we present here, on the other hand,
computing time grows linearly with the number of discretisation
points.

Yet another method was proposed by Diederich and Buse-
meyer (2003). Their ‘matrix method’ is based on approximating
the diffusion process that is continuous in space and time by a
process that is discrete in time and space. The transition prob-
abilities of this discrete process are chosen based on the drift
and diffusion function of the diffusion process such that, as the
size of the time and space steps tends to zero, the approximating
process converges in distribution to the diffusion process. The
density of the first-passage time of the diffusion process is then
approximated by the (discrete) density of the first-passage time
of the discrete process, which can be computed by a sequence of
matrix multiplications. The matrix method also provides a high
level of flexibility as it can be applied to a large class of diffusion
models that are of interest to psychologists (see, e.g., Shinn et al.,
2020). Indeed, the matrices modelling the transition probabilities
of the discrete-time finite-state process are strikingly similar to
the matrices we consider to discretise the Fokker–Planck PDE.
This is no coincidence: as Diederich and Busemeyer (2003) point
out, the transition matrix used in their matrix method is equal
to the matrix used in the Euler-forward scheme (see Appendix
A.4 in their paper). That is, the matrix method is equivalent to
a Euler-forward/finite difference approximation of the solution
of a Fokker–Planck equation with homogeneous boundary con-
ditions and a Dirac delta function as initial data. This reveals the
problems involved in this approach: firstly, the wild behaviour of
the initial data leads to large errors in the calculated transition
probabilities. Secondly, a drawback of the Euler forward scheme
is that it is not unconditionally stable. This means that the size
of the time steps in the discretisation needs to be proportional
to the square of the size of the space steps. Therefore, the ma-
trix method quickly becomes computationally unfeasible when
high accuracy (i.e., small space steps) is required. The problem
regarding the lack of stability is overcome in Shinn et al. (2020) by
considering a Crank–Nicolson method instead of an Euler forward
scheme.

In summary, both the matrix method and the method intro-
duced in Voss and Voss (2008) are suitable for calculating the
distribution of the first-passage time for general diffusion models.
When we compare the two, we see that the matrix model is
based on a Fokker–Planck PDE whose solution is the density of
the diffusion process starting in a fixed position, and which is
absorbed at the boundaries. By (numerically) keeping track of
the portion that is absorbed at either boundary, one obtains an
approximation of the density of the first passage time for the dif-
fusion process starting in a fixed position. The method introduced
in Voss and Voss (2008) is based on a Fokker–Planck PDE whose
solution gives the distribution function of the first passage time in
a fixed time point, but for range of starting points and thus also an
approximation of the density. By solving multiple Fokker–Planck
PDEs we obtain the distribution function of the first passage
time for a range of time points. Both Fokker–Planck equations
have properties that inhibit efficient numerical approximation: in

the matrix method, the initial data is ill-behaved, in the method
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f Voss and Voss (2008), one has a discontinuity in the initial-
nd boundary conditions. However, in the case of Voss and Voss
2008), the problem can be overcome by the method described
n this paper, that is, by subtracting a known function and then
olving a ‘well-behaved’ Fokker–Planck equation.
Our exposition is aimed at a psychological audience and is

argely self-contained. In a companion paper (Boehm et al., 2021)
e provide a rigorous proof that the Fokker–Planck equation with
omogeneous initial and boundary conditions is more regular
han the original Fokker–Planck equation. We use this regularity
esult to obtain error bounds for the numerical approximation of
he Fokker–Planck PDE when using a space-time minimal residual
ethod. Unfortunately, we are not able to provide (optimal) error
ounds for the Crank–Nicolson method for the Fokker–Planck
DE. The minimal residual method is not as straightforward to
mplement as the Crank–Nicolson method, and the regularity
esults in Boehm et al. (2021) are beyond the scope of this paper.
hus, for the sake of clarity of the exposition, and as the numerical
xperiments suggest that both methods behave similarly, we
estrict ourselves to the Crank–Nicolson method here and refrain
rom discussing the results in Boehm et al. (2021) in further
etail.

. Models with space-time-dependent drift functions

Diffusion models can be expressed formally in terms of a
tochastic differential equation

(t) = x0 +

∫ t

0
v(X(s), s) ds +

∫ t

0
σ (X(s), s) dB(s), t ∈ [0, ∞),

(1)

where v : R×R≥0 → R is the drift function, and σ : R×R≥0 → R
is the diffusion function, B is a standard Brownian motion, and
x0 ∈ R is the initial value. As diffusion models used in psychology
typically assume that the diffusion function is constant, we will
assume from now on that σ (x, t) = σ is constant. The, possibly
time-dependent, lower and upper boundaries are l, u : R≥0 → R.

We denote the probability that X(t) hits boundary u before
time T ∈ R≥0 and before hitting boundary l by φx0 (T ). Using well-
known results from stochastic analysis it can be shown that this
probability satisfies

φx0 (T ) = F (x0, T ), (2)

where F is the solution to the following Fokker–Planck equation
(see Appendix A in Voss and Voss (2008) for the case that l and
u are constant and v does not depend on time or Chapter 7
in Øksendal (1998) for general Fokker–Planck equations)

∂tF (x, t) =
σ2

2 ∂2
x F (x, t) + v(x, T − t)∂xF (x, t),

∀ 0 < t < T , l(T − t) < x < u(T − t), (3a)

with initial condition

F (x, 0) = 0, ∀ l(T ) < x < u(T ) (3b)

and boundary conditions

F (l(T − t), t) = 0, F (u(T − t), t) = 1, ∀ 0 < t < T . (3c)

Thus, as observed in Voss and Voss (2008), if the boundaries l
and u are constant and the drift v does not depend on time,
then the first passage time probability φx0 (t) is obtained for all
x0 ∈ (l(0), u(0)) and all t ∈ (0, T ) simultaneously by solving Eq. (3).
This is illustrated in the top panel of Fig. 1. Since the boundaries
and drift function do not depend on time, the probability that
a process that starts at x0 at time 0 passes the upper boundary
first and before time T − t is equal to the probability that a
0 p

3

Fig. 1. Diffusion model with constant vs. time-dependent boundaries. Due
to the time-homogeneity of models with constant boundaries and constant
drift function, the first-passage time distribution can be obtained by solving
a single Fokker–Planck equation. For models with time-dependent boundaries, a
different Fokker–Planck equation needs to be solved for each first-passage time
probability of interest.

process that starts at x0 at time t0 passes the upper boundary
first and before time T . The latter probability is equal to the
value F (x0, T − t0) of the solution of the corresponding Fokker–
Planck equation. Hence, the first-passage time distribution for all
t ∈ (0, T ) can be obtained by evaluating the solution to Eq. (3) at
different values of t with constant boundary conditions.

However, if l and/or u depend on time, then for each choice
of T the first passage time probability φx0 (T ) involves a different
okker–Planck equation, where the difference lies not only in
he final time, but also, and more importantly, in the position of
he boundaries. This is illustrated in the bottom panel of Fig. 1.
ince the boundaries depend on time, the height of the bound-
ries differs between a process that starts at x0 at time 0 and a
rocess that starts at x0 at time t0. Hence, the first-passage time
istribution for models with time-dependent boundaries cannot
e obtained by evaluating the solution to Eq. (3) with the same
oundary conditions at different values of t . Instead, due to the
ime inversion T − t , the Fokker–Planck equation must be solved
n different time domains (0, T ) and the solution evaluated at the
erminal time T , where T is chosen to equal the times for which
he first-passage time distribution function is desired.

Similarly, if the drift v depends on time, then φx0 (T ) also
nvolves a different Fokker–Planck equation for each choice of
, where the difference lies not only in the final time, but also
n the values of the drift. As a consequence, we think of T as a
arameter indexing a family of Fokker–Planck equations that we
ish to solve. Note that we do not think of x0, the initial value
f X , as a parameter in this context as we always obtain φx0 (T )
or all x0 ∈ (l(0), u(0)) simultaneously when we work via the
okker–Planck equation.
For illustration, we will consider three concrete example mod-

ls, two with space-time-dependent drift functions and one with
ime-dependent boundaries. However, we stress that the results

resented in this work apply to general space-time-dependent



U. Boehm, S. Cox, G. Gantner et al. Journal of Mathematical Psychology 105 (2021) 102613

d
p
b

2

m
f
S
a
I
x

v

I

rift functions and time-dependent boundaries. As we will ex-
lain in Section 3.2, models with time-dependent boundaries can
e reduced to the case of a space-time-dependent drift function.

.1. Ornstein–Uhlenbeck model

The Ornstein–Uhlenbeck model has been considered as a
odel for response time and accuracy data in two-alternative

orced choice tasks (Busemeyer & Townsend, 1992; Heath, 2000;
mith, 1995, 2010). More recently the model has also been
pplied to event sampling data de Haan-Rietdijk et al. (2017).
n this model the drift function depends on the space variable
, which represents the current state of the diffusion process

(x) = v0 − βx (4)

The boundaries are assumed to be constant and located at l(t) = 0
and u(t) = a > 0. The three parameters of this model are a, v0
and β .

In psychological terms, the boundary separation a represents
the decision-maker’s response caution. The drift rate v0 repre-
sents the rate at which information in favour of one response
option over the other becomes available, and the decay term β
determines how quickly information that has been accumulated
earlier is pulled back to 0.

2.2. Models with urgency signal

Various models with time-dependent drift functions have
been considered to account for behavioural and physiological data
from primates (e.g., Churchland et al., 2008; Ditterich, 2006a;
Hanks et al., 2014; Hawkins et al., 2015). As an example, we
consider the drift function suggested by Churchland et al. (2008)
and Hanks et al. (2014) as a representation of response urgency.
The hyperbolic drift function

v(t) = v0 + v1
t

t + τ
(5)

has parameters v0, v1, τ . Here, we will consider the hyperbolic
drift function in combination with simple constant boundaries
located at l(t) = 0 and u(t) = a > 0. Hence, the four parameters
of this model are a, v0, v1 and τ .

In psychological terms, the boundary separation a again repre-
sents the decision-maker’s response caution. The drift rate v0 rep-
resents the rate at which information in favour of one response
option over the other becomes available, v1 is the maximum gain
due to response urgency, and τ is the time at which half of the
maximum gain is reached.

2.3. Models with collapsing boundaries

Several authors have suggested models with time-dependent
decision boundaries of varying complexity (e.g., Bowman et al.,
2012; Churchland et al., 2008; Ditterich, 2006a; Drugowitsch
et al., 2012; Hanks et al., 2014; Hawkins et al., 2015; Milosavljevic
et al., 2010). Here, we will focus on the simplest model with a
constant drift function v(x, t) = v0 and linear collapsing bounds
(Bowman et al., 2012; Evans et al., 2020; Milosavljevic et al.,
2010). The lower bound l(t) and upper bound u(t) in this model
are

l(t) = a
t

2T∞

, u(t) = a
(
1 −

t
2T∞

)
. (6)

The three parameters of this model are v0, a, and T∞.
In psychological terms, a is the boundary separation at time

t = 0 and T∞ is the time at which the boundaries have col-
lapsed completely. The drift rate v0 represents the rate at which
information becomes available.
 s

4

3. Numerical approximation

Developing a numerical solution scheme for the Fokker–Planck
Eq. (3) comes with two problems. The first problem is the singu-
larity induced by the discontinuity between initial and boundary
conditions, which leads to large approximation errors. Indeed, the
initial condition (3b) means that limx↑u(T ) F (x, 0) = 0 while the
boundary condition (3c) means that limt↓0 F (u(T − t), t) = 1.
Numerical methods often approximate the solution F to Eq. (3) lo-
cally by smooth functions, which cannot accommodate the jump
at (x, t) = (u(T ), 0) and therefore provide a poor approximation
of the solution near the singularity.

The second problem is the fact that the domain of the so-
lution F to Eq. (3) is not rectangular when l and u are time-
dependent. The construction and analysis of numerical schemes
for evolutionary PDEs with time-dependent spatial domains is
complicated. To keep our numerical approximation simple and
accessible we transform Eq. (3) to a Fokker–Planck equation on
the space-time domain (0, 1) × (0, 1). This has the additional
benefit that it allows for easy interpolation between solutions
for different parameter values, which is particularly relevant in
this context as the final time T is also viewed as a parameter.
More importantly, it also paves the path to solving our first prob-
lem: the series expansion of the solution to the Fokker–Planck
equation on a rectangular domain with above-mentioned discon-
tinuity in initial- and boundary conditions and constant drift is
known. By subtracting this function, we obtain a Fokker–Planck
PDE for which numerical approximation is more efficient.

In summary, the calculation of the solution F to Eq. (3) pro-
ceeds in three steps, each corresponding to a section below:

1. Transformation of Eq. (3) to a Fokker–Planck equation on
space-time domain (0, 1) × (0, 1), see Eq. (7);

2. Calculation of F̂v̂0 by means of a series expansion, where F̂v̂0
is the solution to a Fokker–Planck equation with constant
drift v̂0 and the same initial and boundary conditions as
Eq. (3);

3. Calculation of Ê := F̂ − F̂v̂0 by means of a Crank–Nicolson
discretisation scheme, where F̂ is the solution to Eq. (7). We
use that Ê is the solution to a Fokker–Planck equation with
homogeneous initial and boundary conditions, see Eq. (8).

A possible fourth step involves solving Eq. (3) for multiple pa-
rameter values and using interpolation to obtain the solution for
a complete parameter range. This is explained in detail in Section
5 of Boehm et al. (2021).

3.1. Transformation of space-time domain to (0, 1) × (0, 1)

We will carry out a transformation of the actual space-time
domain ΩT := {(x, t) ∈ R × (0, T ) : l(T − t) < x <

u(T − t)} of Eq. (3) to the fixed domain Ω̂ = (0, 1) × (0, 1).
In this transformation, we also change the spatial orientation so
the inhomogeneous boundary condition ends up on the lower
boundary. This change of orientation is not necessary but having
the inhomogeneous boundary condition on the lower boundary
simplifies the notation for the series expansion discussed in the
next section. In order for this transformation to work, we need
that l < u on [0, T ].

We first choose a transformation of the space variable. To map
the time-dependent space domain at each t to the fixed domain
(0, 1), we define

x̂ =
u(T − t) − x

u(T − t) − l(T − t)
.

ntuitively, this transformation inverts the space-direction and
tretches the space domain at each time point t so that the
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ower boundary becomes 1 and the upper boundary becomes 0.
nfortunately, this transformation of the space variable is time-
ependent, and thus results in a Fokker–Planck equation with
time-dependent diffusion. This is problematic, as the trick of

ubtracting a known function to obtain a nicer PDE requires
constant diffusion coefficient. (Indeed, if the diffusion term

s time-dependent, then the forcing function ĝ introduced in
ection 3.2 involves not only ∂xF̂v̂0 , with F̂v̂0 as introduced in
ection 3.2, but also ∂xxF̂v̂0 . This second order derivative would

render the forcing function too irregular for efficient numerical
approximation.) We overcome this problem by also performing a
transformation in the time variable which precisely compensates
for the introduced time dependence in the diffusion coefficient.
The derivations below clarify this.

We define T̃ =
∫ T
0 |u(T − s) − l(T − s)|−2 ds. Then, as we will

see below, a suitable choice for the transformation of the time
variable is

t̂ =
1

T̃

∫ t

0
|u(T − s) − l(T − s)|−2 ds,

where the factor 1
T̃

ensures that the transformed time variable
as domain (0, 1). The transformations of both variables are in-

vertible, indeed,

t = h(t̂) := inf
{
r ∈ [0, T ]:

1

T̃

∫ r

0
|u(T − s) − l(T − s)|−2 ds > t̂

}
,

x = g(x̂, t̂) := l(T − h(t̂))x̂ + u(T − h(t̂))(1 − x̂).

Note further that (using that for any invertible mapping φ we
have the identity (φ−1)′(y) = [φ′(φ−1(y))]−1)

h′(t̂) = T̃
⏐⏐u(T − h(t̂)) − l(T − h(t̂))

⏐⏐2,
∂t̂g(x̂, t̂) = −h′(t̂)

(
l′(T − h(t̂))x̂ + u′(T − h(t̂))(1 − x̂)

)
,

∂x̂g(x̂, t̂) = −
(
u(T − h(t̂)) − l(T − h(t̂))

)
,

and

∂2
x̂ g(x̂, t̂) = 0.

We define F̂ (x̂, t̂) = F (g(x̂, t̂), h(t̂)) with domain Ω̂ = (0, 1) ×

(0, 1). Using that

∂t̂ F̂ (x̂, t̂) = ∂t̂g(t̂, x̂)∂xF (g(x̂, t̂), h(t̂)) + h′(t̂)∂tF (g(x̂, t̂), h(t̂)),

∂x̂F̂ (x̂, t̂) = ∂x̂g(x̂, t̂)∂xF (g(x̂, t̂), h(t̂)),

∂2
x̂ F̂ (x̂, t̂) = (∂x̂g(x̂, t̂))2∂2

x F (g(x̂, t̂), h(t̂)),

we compute

∂t̂ F̂ (x̂, t̂) = ∂t̂g(x̂, t̂)∂xF (g(x̂, t̂), h(t̂)) + h′(t̂)∂tF (g(x̂, t̂), h(t̂))

= ∂t̂g(x̂, t̂)∂xF (g(x̂, t̂), h(t̂))

+ h′(t̂)
[

σ2

2 ∂2
x F (g(x̂, t̂), h(t̂)) + v(g(x̂, t̂), T

−h(t̂))∂xF (g(x̂, t̂), h(t̂))
]

=

[
h′(t̂)(∂x̂g(x̂, t̂))−2 σ2

2

]
∂2
x̂ F̂ (x̂, t̂)

+
(
∂x̂g(x̂, t̂)

)−1 [
∂t̂g(x̂, t̂)

+h′(t̂)v(g(x̂, t̂), T − h(t̂))
]
∂x̂F̂ (x̂, t̂)

=
σ2 T̃
2 ∂2

x̂ F̂ (x̂, t̂) +
(
∂x̂g(x̂, t̂)

)−1

×
[
∂t̂g(x̂, t̂) + h′(t̂)v(g(x̂, t̂), T − h(t̂))

]
∂x̂F̂ (x̂, t̂),

where our choice of the transformation of the time variable
ensures that h′(t̂) cancels the, possibly time-dependent, factor
(∂x̂g(x̂, t̂))−2 to yield a constant diffusion coefficient. We thus
obtain that F̂ satisfies the simplified Fokker–Planck equation

∂ F̂ (x̂, t̂) = σ̂ ∂2F̂ (x̂, t̂) + v̂(x̂, t̂)∂ F̂ (x̂, t̂), ∀ (x̂, t̂) ∈ Ω̂, (7a)
t̂ x̂ x̂ t

5

where σ̂ =
σ2 ∫ T

0 |u(T−s)−l(T−s)|−2 ds
2 ,

v̂(x̂, t̂) =
(
∂x̂g(x̂, t̂)

)−1 [
∂t̂g(x̂, t̂) + h′(t̂)v(g(x̂, t̂), T − h(t̂))

]
=
(
u(T − h(t̂)) − l(T − h(t̂))

) ∫ T

0
|u(T − s) − l(T − s)|−2 ds

×
[
l′(T − h(t̂))x̂ + u′(T − h(t̂))(1 − x̂)

− v(l(T − h(t̂))x̂ + u(T − h(t̂))(1 − x̂), T − h(t̂))
]
,

(7b)

nd we have initial condition
ˆ (x̂, 0) = 0, ∀ 0 < x̂ < 1, (7c)

nd boundary conditions

ˆ (0, t̂) = 1, F̂ (1, t̂) = 0, ∀ 0 < t̂ < 1. (7d)

Applying this transformation to our example models, we ob-
ain the following diffusion coefficients and drift functions. For
he Ornstein–Uhlenbeck model, the diffusion coefficient is σ̂ =
Tσ2

2a2
and the drift function becomes

v̂(x̂, t̂) = v̂0 − β̂ x̂,

where v̂0 = βT −
Tv0
a and β̂ = βT . For the model with hyperbolic

rift the diffusion coefficient is σ̂ =
Tσ2

2a2
and the drift function

becomes

v̂(x̂, t̂) = v̂0 + v̂1
1 − t̂

1 − t̂ + τ̂
,

where v̂0 = −
Tv0
a , v̂1 = −

Tv1
a , and τ̂ =

τ
T . Finally, for the model

with linear collapsing bounds, we use that

T̃ =
TT∞

a2(T∞ − T )
, h(t̂) =

T (T∞ − T )t̂
T∞ − T t̂

to obtain the transformed diffusion coefficient σ̂ =
TT∞σ2

2a2(T∞−T )
and

he transformed drift function

ˆ(x̂, t̂) =
TT∞

a(T∞ − T t̂)

(
a

2T∞

(2x̂ − 1) − v0

)
.

.2. Fokker–Planck equation with homogeneous boundary condi-
ions

In the PDE (7), the initial and boundary conditions still intro-
uce a singularity at (x̂, t̂) = (0, 0), which causes large errors
n numerical approximations to the solution. The effect of this
ingularity on the approximation error can be considerably weak-
ned by subtracting the known solution for the case of a constant
rift function. For a model with diffusion coefficient σ̂ , constant

drift function v̂(x̂, t̂) = v̂0 and constant boundaries located at
0 and 1, the solution to the PDE (7) can be expressed as the
fast-converging series (Gondan et al., 2014)

F̂v̂0 (x̂, t̂) = e−
v̂0 x̂
2σ̂ −

v̂20 t̂
4σ̂

∞∑
k=0

(−1)kϕ
(

rk
√

2σ̂ t̂

)
×

(
M
(
rk − v̂0 t̂
√

2σ̂ t̂

)
+ M

(
rk + v̂0 t̂
√

2σ̂ t̂

))
,

here rk = k + x̂ if k is even and rk = k + 1 − x̂ if k is odd,
and M(y) =

1−Φ(y)
ϕ(y) is the Mills ratio, with Φ the standard normal

distribution function and ϕ the standard normal density.
The series solution for the problem with constant drift func-

ion v̂0 = v̂(0, 0) and the solution to the PDE (7) with a general
rift function both satisfy the same initial and boundary condi-
ions. Hence, by subtracting the series solution from the solution



U. Boehm, S. Cox, G. Gantner et al. Journal of Mathematical Psychology 105 (2021) 102613

t
i

∂

F

c
c

3

f
e
f
[

∆

0
∂

E

E

A
t

∂

∂

∂

t
a
T

I
w

o the general problem, we obtain a PDE with homogeneous
nitial and boundary conditions. For the difference Ê(x̂, t̂) =

F̂ (x̂, t̂) − F̂v̂0 (x̂, t̂) we compute

t̂ Ê(x̂, t̂) = ∂t̂ F̂ (x̂, t̂) − ∂t̂ F̂v̂0 (x̂, t̂)

= σ̂ [∂2
x̂ F̂ (x̂, t̂) − ∂2

x̂ F̂v̂0 (x̂, t̂)] + v̂(x̂, t̂)∂x̂F̂ (x̂, t̂) − v̂(0, 0)∂x̂F̂v̂0 (x̂, t̂)

= σ̂ [∂2
x̂ F̂ (x̂, t̂) − ∂2

x̂ F̂v̂0 (x̂, t̂)] + v̂(x̂, t̂)[∂x̂F̂ (x̂, t̂) − ∂x̂F̂v̂0 (x̂, t̂)]

+ (v̂(x̂, t̂) − v̂(0, 0))∂x̂F̂v̂0 (x̂, t̂).

In summary, we obtain the following problem for the difference
Ê(x̂, t̂) = F̂ (x̂, t̂) − F̂v̂0 (x̂, t̂):

∂t̂ Ê(x̂, t̂) = σ̂ ∂2
x̂ Ê(x̂, t̂) + v̂(x̂, t̂)∂x̂Ê(x̂, t̂) + ĝ(x̂, t̂), (8a)

with forcing function ĝ(x̂, t̂) = (v̂(x̂, t̂) − v̂(0, 0))∂x̂F̂v̂0 , initial
condition

Ê(x̂, 0) = 0, ∀ 0 < x̂ < 1, (8b)

and homogeneous boundary conditions

Ê(0, t̂) = Ê(1, t̂) = 0, ∀ 0 < t̂ < 1. (8c)

Although the factor ∂x̂F̂v̂0 in the definition of the forcing function
has a singularity at (0, 0), the factor (v̂(x̂, t̂) − v̂(0, 0)) is zero at
(0, 0) and thus ensures that the singularity vanishes. In fact, it
can be proved that this problem has a smoother solution than
the original problem (7) and can therefore be approximated more
accurately (see Theorems 3.1 and 4.1, as well as the final remark
of Section 3 in Boehm et al. (2021)).

The forcing function ĝ(x̂, t̂) can be computed efficiently as the
space-derivative ∂x̂F̂v̂0 can be expressed as a fast converging series

∂x̂F̂v̂0 = 2e−
v̂0 x̂
2σ̂ −

v̂20 t̂
2σ̂

∞∑
k=0

(−1)k+1ϕ

(
rk

√

2σ̂ t̂

)
×

[
v̂0

2σ̂
M
(
rk + (−1)k+1v̂0 t̂

√

2σ̂ t̂

)
+

(−1)k
√

2σ̂ t̂

]
. (9)

If the terms k = 0, . . . , 2K − 1 of the series are computed, an
upper bound for the truncation error is given by

ϵ = e−
v̂0 x̂
2σ̂ −

v̂20 t̂
2σ̂

(
|v̂0|

√

π t̂
σ̂

+ 1

)

×

(
2 − Φ

(
2(K − 1) + x̂

√

2σ̂ t̂

)
− Φ

(
2K − x̂
√

2σ̂ t̂

))
.

or given values of σ̂ , x̂, t̂ , and v̂0, this expression can be eval-
uated for a small number of values of K and compared to the
desired accuracy to determine the number of terms to which the
series needs to be computed. In practice it is often sufficient to
compute no more than 10 terms to achieve acceptable accuracy
(e.g., for σ̂ = 2, (x̂, t̂) ∈ [0, 1] × [0, 1], and −50 ≤ v̂0 ≤ 50,
omputing 10 terms yields ϵ ≤ 10−16). Details of the truncation
riterion for the series for ∂x̂F̂v̂0 are given in Appendix A.

.3. Crank–Nicolson approximation

Our numerical solution method for the PDE (8) is based on a
inite difference approximation to the partial derivatives of Ê. To
ase readability, we write from now on x and t instead of x̂ and t̂
or space and time variables. Let N ∈ N. We discretise the closure
0, 1] of the space and time domains into N intervals of length
x = ∆t =

1
N . We write xi = i∆x for 0 ≤ i ≤ N and tj = j∆t for

≤ j ≤ N . To approximate the second-order partial derivative
2
x Ê, we develop Ê(x ± ∆x, t) in a Taylor series:

ˆ (x + ∆x, t) = Ê(x, t) + ∂ Ê(x, t)∆x
x

6

+
1
2
∂2
x Ê(x, t)(∆x)2 + O((∆x)3),

ˆ (x − ∆x, t) = Ê(x, t) − ∂xÊ(x, t)∆x

+
1
2
∂2
x Ê(x, t)(∆x)2 + O((∆x)3).

dding the two expansions, solving for ∂2
x Ê and neglecting the

erms of order O((∆x)3) yields the so-called centred difference:

2
x Ê(x, t) ≈

Ê(x + ∆x, t) − 2E(x, t) + Ê(x − ∆x, t)
(∆x)2

.

Similar computations yield the centred difference approximation
to ∂xÊ

xÊ(x, t) ≈
Ê(x + ∆x, t) − Ê(x − ∆x, t)

2∆x
,

and the forward and backward difference approximations to ∂t Ê:

t Ê(x, t) ≈
Ê(x, t + ∆t) − Ê(x, t)

∆t
,

∂t Ê(x, t) ≈
Ê(x, t) − Ê(x, t − ∆t)

∆t
.

To approximate the solution to Eq. (7) at (xi, tj), we replace
he partial derivatives ∂xÊ, ∂2

x Ê in Eq. (7) by their finite difference
pproximations and ∂t Ê by the forward difference approximation.
his gives the approximation

Ê(xi, tj + ∆t) − Ê(xi, tj)
∆t

≈ σ̂
Ê(xi + ∆x, tj) − 2E(xi, tj) + Ê(xi − ∆x, tj)

(∆x)2

+ v̂(xi, tj)
Ê(xi + ∆x, tj) − Ê(xi − ∆x, tj)

2∆x
+ ĝ(xi, tj).

Using the more convenient notation Ei,j = Ê(xi, tj), vi,j = v̂(xi, tj),
gi,j = ĝ(xi, tj) and neglecting that the equality is only approxi-
mate, we obtain
Ei,j+1 − Ei,j

∆t
= σ̂

Ei+1,j − 2Ei,j + Ei−1,j

(∆x)2
+ vi,j

Ei+1,j − Ei−1,j

2∆x
+ gi,j.

f we use the backward difference approximation for ∂t Ê instead,
e obtain the approximation to the solution at (xi, tj+1)

Ei,j+1 − Ei,j
∆t

= σ̂
Ei+1,j+1 − 2Ei,j+1 + Ei−1,j+1

(∆x)2

+ vi,j+1
Ei+1,j+1 − Ei−1,j+1

2∆x
+ gi,j+1.

Averaging these approximations and rearranging terms, we get
the Crank–Nicolson approximation(

−σ̂
∆t

2(∆x)2
+ vi,j+1

∆t
4∆x

)
Ei−1,j+1 +

(
1 + σ̂

∆t
(∆x)2

)
Ei,j+1

−

(
σ̂

∆t
2(∆x)2

+ vi,j+1
∆t
4∆x

)
Ei+1,j+1 (10)

=

(
σ̂

∆t
2(∆x)2

− vi,j
∆t
4∆x

)
Ei−1,j +

(
1 − σ̂

∆t
(∆x)2

)
Ei,j

+

(
σ̂

∆t
2(∆x)2

+ vi,j
∆t
4∆x

)
Ei+1,j + Gi,j,

where Gi,j =
∆t
2 (gi,j+1 + gi,j).

The recursive relation (10) can be more conveniently ex-
pressed in matrix notation. Let

ν+
= 1 + σ̂ ∆t

(∆x)2
, ν−

= 1 − σ̂ ∆t
(∆x)2

,

µ+
= σ̂ ∆t

+ v ∆t , µ−
= σ̂ ∆t

− v ∆t .
i,j 2(∆x)2 i,j 4∆x i,j 2(∆x)2 i,j 4∆x
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e define the matrices

(1)
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν+
−µ+

1,j 0 . . . . . . 0

−µ−

2,j ν+
−µ+

2,j
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −µ−

N−2,j ν+
−µ+

N−2,j
0 . . . . . . 0 −µ−

N−1,j ν+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

A(2)
j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν− µ+

1,j 0 . . . . . . 0

µ−

2,j ν− µ+

2,j
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . µ−

N−2,j ν− µ+

N−2,j
0 . . . . . . 0 µ−

N−1,j ν−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that A(2)
j is equal to A(1)

j with ν+ replaced by ν− and the sign
of µ±

i,j reversed. Moreover, we define the vectors

Ej = (E1,j E2,j . . . EN−2,j EN−1,j)⊤ and

Gj = (G1,j G2,j . . . GN−2,j GN−1,j)⊤.

The recursive relation (10) can now be solved by iteratively
solving the equation

A(1)
j+1Ej+1 = A(2)

j Ej + Bj + Gj (11)

with initial condition E0 = (0 . . . 0)⊤ and homogeneous
boundary condition Bj = (0 . . . 0)⊤.

4. Numerical experiments

In this section we present a numerical illustration of our
method. MATLAB code that implements our method is available
at https://osf.io/xv674/ and we provide a brief illustration of the
code in Appendix B. As outlined in the previous section, we apply
the Crank–Nicolson method to approximate Ê = F̂ − F̂v̂0 resulting
from the models (4), (5), or (6) for different parameter choices.
For simplicity we assume σ = 1 throughout. We consider five
equidistant values for the parameters determining the bound-
aries and the drift, for instance, for v0 ∈ [−1, 1], we consider
v0 = −1, −0.5, 0, 0.5, 1. Recall moreover from Eq. (3) that the
evaluation time T is also a model parameter if l, u, or v depends
on time, that is, it is a parameter in the models (5) and (6). For
these models we consider five equidistant values for T spanning
[0.1, 2.5], which is a typical range of response times in diffusion
model applications Ratcliff and McKoon (e.g., 2008). For com-
parison, we also use the Crank–Nicolson method (with adapted
boundary condition B) to directly approximate F̂ as solution of
the PDE (7). We will evaluate the Crank–Nicolson approximations
to Ê and F̂ at 100 equidistant values of x̂ ∈ [0, 1] and t̂ ∈

[0, 1]. As these evaluation points do not necessarily coincide with
the points at which the Crank–Nicolson approximations Ei,j and
Fi,j are computed, we use bilinear interpolation of the adjacent
Crank–Nicolson points to obtain approximations ÊN and F̂N to Ê
and F̂ at the equidistant evaluation points. Here, N denotes the
number of space/time intervals.

To obtain an estimate for the error Ê−ÊN and F̂−F̂N , we replace
the exact solutions Ê and F̂ by the improved approximations Ê
2N c

7

and F̂2N , respectively. We measure the errors in the ℓ2- and in the
ℓ∞-norm, that is,

∥Ê2N − ÊN∥ℓ2 =

⎛⎜⎝10−4
∑

x̂,t̂=0, 1
99 ,...,1

(
Ê2N (x̂, t̂) − ÊN (x̂, t̂)

)2⎞⎟⎠
1
2

and

∥Ê2N − ÊN∥ℓ∞
= max

x̂,t̂=0, 1
99 ,...,1

⏐⏐⏐Ê2N (x̂, t̂) − ÊN (x̂, t̂)
⏐⏐⏐

with analogous definitions for F̂ . For each considered model, we
plot these quantities over the computational time. By computa-
tional time we mean the average time to compute the terms F̂N ,
ˆ2N , ÊN , and Ê2N and to evaluate the differences F̂2N − F̂N and
ˆ2N − ÊN , respectively, for the 100 × 100 equidistant space and
ime points in [0, 1] × [0, 1]. All computations were carried out
n a MacBook Pro 2016, with a 2 GHz Dual-Core Intel Core i5
rocessor, using MATLAB version R2019a.
We use a double-logarithmic convergence plot so that the

lopes of the curves coincide with the corresponding algebraic
onvergence rates. One says that an error converges at algebraic
ate s > 0 with respect to computing time if, at least asymp-
otically, it behaves as C × computing time−s with some fixed
onstant C > 0. For instance, an algebraic convergence rate 1
ndicates that doubling the computing time halves the approx-
mation error. The Crank–Nicolson method applied to the heat
quation with sufficiently smooth solution yields convergence
ate 1 (see, e.g., Larsson & Thomée, 2008). We also mention
hat the computational time is proportional to the number of
rank–Nicolson points N2.

.1. Ornstein–Uhlenbeck model (4)

Based on the parameter estimates reported in Matzke and Wa-
enmakers (2009) and Smith (2010), we consider the parameter
anges v0 ∈ [−2, 2], β ∈ [−4, 4], a ∈ [0.5, 2], and T = 2.5. In
Fig. 2 we plot the errors F̂2N − F̂N ≈ F̂ − F̂N and Ê2N − ÊN ≈ Ê − ÊN
ver the computational time. It is clearly visible that the naive
pproach of directly applying Crank–Nicolson for the singular
olution F̂ yields a much worse convergence behaviour than
ur new approach of applying Crank–Nicolson for the smoother
olution Ê. Indeed, our approach even yields rate 1, which one
ould expect for smooth functions.
Fig. 3 shows an example of the approximation to the first-

assage time distribution φx0 (T ) for the absolute starting point
0 = 0.42 based on ÊN (blue lines) and F̂N (red lines). The
pproximation for different numbers of space/time intervals N is
hown as dashed lines. As comparison standard, a high-precision
pproximation with estimated absolute error tolerance ϵ = 10−7

s shown as a solid grey line. As can be seen, the approximation ÊN
s visually indistinguishable from the high-precision approxima-
ion for N > 2. The approximation F̂N , on the other hand, deviates
learly from the high-precision approximation and converges
lowly as N increases.

.2. Model with urgency signal (5)

Based on the parameter estimates reported in Churchland
t al. (2008) and Hanks et al. (2014), we consider the parameter
anges v0 ∈ [1.64, 1.97], v1 ∈ [0.99, 2.31], τ ∈ [0.13, 0.40],

∈ [1.38, 2.26], and T ∈ [0.1, 2.5]. In Fig. 4 we again plot
the errors F̂2N − F̂N ≈ F̂ − F̂N and Ê2N − ÊN ≈ Ê − ÊN over
he computational time. Again, direct approximation of F̂ yields a
onsiderably worse rate than our approach, which yields rate 1.

https://osf.io/xv674/
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Fig. 2. Comparison of maximal errors for different approximation methods for
he Ornstein–Uhlenbeck model (4). Maximal errors in the ℓ2-norm and the
∞-norm are shown for the Crank–Nicolson method applied to the original
okker–Planck equation, ∥F̂2N − F̂N∥ℓ2 and ∥F̂2N − F̂N∥ℓ∞

, and applied to the
implified Fokker–Planck equation, ∥Ê2N−ÊN∥ℓ2 and ∥Ê2N−ÊN∥ℓ∞

. Points indicate
the maximal error across all considered 53

= 125 parameter combinations
for N = 21, 22, . . . , 211 space/time intervals. The axes are scaled double-
logarithmically and errors are plotted against the average computational time
for one parameter combination.

Fig. 3. Example first-passage time distribution based on different approximation
methods and different numbers of space/time intervals N for the Ornstein–
hlenbeck model (4). The first-passage time distribution function φx0 (T ) is
hown for x0 = 0.42 and parameters (v0, β, a) = (1, 0.4, 1.2). The solid grey line
hows a high-precision approximation with estimated maximum error tolerance
= 10−7 .

Fig. 5 shows an example of the approximation to the first-
assage time distribution φx0 (T ) for the absolute starting point
0 = 0.49 based on ÊN and F̂N for different N . Similar to the
rnstein–Uhlenbeck model, the approximation ÊN is visually in-
istinguishable from the high-precision approximation for N >

. The approximation F̂N , on the other hand, deviates clearly
rom the high-precision approximation and converges slowly as
increases.
8

Fig. 4. Comparison of maximal errors for different approximation methods for
the model with hyperbolic urgency signal (5). Maximal errors in the ℓ2-norm
nd the ℓ∞-norm are shown for the Crank–Nicolson method applied to the
riginal Fokker–Planck equation, ∥F̂2N − F̂N∥ℓ2 and ∥F̂2N − F̂N∥ℓ∞

, and applied
to the simplified Fokker–Planck equation, ∥Ê2N − ÊN∥ℓ2 and ∥Ê2N − ÊN∥ℓ∞

.
oints indicate the maximal error across all considered 55

= 3125 parameter
ombinations for N = 21, 22, . . . , 211 space/time intervals. The axes are scaled
ouble-logarithmically and errors are plotted against the average computational
ime for one parameter combination.

Fig. 5. Example first-passage time distribution based on different approximation
methods and different numbers of space/time intervals N for the model with
yperbolic urgency signal (5). The first-passage time distribution φx0 (T ) is shown

for x0 = 0.49 and parameters (v0, v1, τ , a) = (1.7, 1.1, 0.2, 1.4). The solid
grey line shows a high-precision approximation with estimated maximum error
tolerance ϵ = 10−7 .

.3. Model with collapsing boundaries (6)

Based on the parameter estimates reported in Evans et al.
2020), we consider the ranges v0 ∈ [0, 5.86], a ∈ [0.56, 3.93],
T∞ ∈ [3, 20], and T ∈ [0.1, 2.5]. In Fig. 6 we again plot the errors
F̂2N − F̂N ≈ F̂ − F̂N and Ê2N − ÊN ≈ Ê − ÊN over the computational
ime. Again, direct approximation of F̂ yields a considerably worse
ate than our approach, which yields the optimal rate 1.
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Fig. 6. Comparison of maximum errors for different approximation methods
or the model with linear collapsing boundaries (6). Maximal errors in the ℓ2-
norm and the ℓ∞-norm are shown for Crank–Nicolson method applied to the
original Fokker–Planck equation, ∥F̂2N − F̂N∥ℓ2 and ∥F̂2N − F̂N∥ℓ∞

, and applied
to the simplified Fokker–Planck equation, ∥Ê2N − ÊN∥ℓ2 and ∥Ê2N − ÊN∥ℓ∞

.
Points indicate the maximal error across all considered 54

= 625 parameter
combinations for N = 21, 22, . . . , 211 space/time intervals. The axes are scaled
double-logarithmically and errors are plotted against the average computational
time for one parameter combination.

Fig. 7. Example first-passage time distribution based on different approximation
methods and different numbers of space/time intervals N for the model with
inear collapsing boundaries (6). The first-passage time distribution φx0 (T ) is
hown for x0 = 0.35 and parameters (v0, a, T∞) = (0.7, 1, 4). The solid grey line
hows a high-precision approximation with estimated maximum error tolerance
= 10−7 .

Fig. 7 shows an example of the approximation to the first-
assage time distribution φx0 (T ) for the absolute starting point
0 = 0.35 based on ÊN and F̂N for different N . Similar to the
revious two example models, the approximation ÊN is visually
ndistinguishable from the high-precision approximation for all
. The approximation F̂N , on the other hand, deviates clearly
rom the high-precision approximation and converges slowly as
increases.
9

. Discussion

In the present work we developed a fast numerical method for
omputing the first-passage time distribution function for diffu-
ion models with space-time-dependent drift functions and time-
ependent boundaries. We solve the Fokker–Planck equation in
wo steps. In a first step, we transform the model’s domain to the
nit square. In a second step, we exploit a known fast-converging
eries solution for models with constant boundaries and constant
rift function to obtain a problem with homogeneous boundary
onditions. The resulting smoother solution is then approximated
umerically using the Crank–Nicolson method. Our numerical ex-
mples illustrate the high accuracy and computational efficiency
f our method.
Our method extends the earlier work by Voss and Voss (2008)

or the Ratcliff diffusion model to models with time-dependent
oundaries and space-time-dependent drift function. Instead of
pplying the Crank–Nicolson scheme to the original Fokker–
lanck equation, we apply the Crank–Nicolson scheme to a sim-
lified Fokker–Planck equation that has a smoother solution,
hich results in a smaller approximation error.
One limitation of our method is that the Fokker–Planck equa-

ion needs to be solved repeatedly for different values of T that
orrespond to the observed response times. Moreover, varying
he parameter values that determine the drift and the boundaries
lso requires repeated solution of the Fokker–Planck equation.
owever, since the Fokker–Planck equation can be solved in-
ependently for different values of the parameters, the compu-
ations can be fully parallelised. Our numerical results for the
xample models considered here suggest that an absolute accu-
acy of three decimals for any T can be achieved at a computing
ime of 1 second. Moreover, the solution to the Fokker–Planck
quation can be shown to depend smoothly on the model pa-
ameters (a proof is given in Section 5 of Boehm et al. (2021)).
ence, if the first-passage time distribution function needs to be
valuated at a large number of response times and/or different
arameter values, the Fokker–Planck equation might be solved
or a suitably chosen subset of parameter values and the value
f the distribution function can subsequently be obtained by
nterpolation.

A further limitation of our method is that it cannot be applied
o models with non-differentiable time-dependent boundaries, as
he transformation to a square domain involves the derivatives
f the boundaries (see Eq. (7b)). Moreover, regardless of the
ransformation, non-smooth boundaries would pose challenges
s they would translate to a lack of smoothness in the solution
o the Fokker–Planck equation. Consequently, other methods for
pproximating the first-passage time distribution, even if they
roduce a solution in the case of non-differentiable boundaries,
ill likely result in large approximation errors. Fortunately, many
odels that are used in practice do have smooth boundaries (e.g.,
owman et al., 2012; Ditterich, 2006b; Hawkins et al., 2015).
Our method enables the fast computation of the complete

istribution function that is required for many of the statistics
egularly used in model fitting. The chi-squared statistic, for
nstance, requires evaluating the distribution function at a given
et of, typically six, quantile response times (Ratcliff & Tuerlinckx,
002). The Kolmogorov–Smirnov statistic requires evaluating the
istribution function at all observed response times (Voss et al.,
004). Extension of our method to the computation of the first-
assage density might also be possible for some models, which
ould support maximum-likelihood and Bayesian model fitting
ethods. The first-passage time density is the time-derivative
f the first-passage time distribution and can, in principle, be
btained by differentiating the Fokker–Planck equation. For mod-
ls with time-independent drift function and time-independent
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oundaries the resulting PDE is a Fokker–Planck equation with
Dirac-delta function as initial condition. As mentioned before,
umerical methods for these types of problems are notoriously
ifficult to implement due to the singular initial condition. How-
ver, a fast-converging series solution is known for simple models
ith constant drift function and boundaries (Gondan et al., 2014).
ence, the difference between the target density and the density
f the simple model satisfies a simplified Fokker–Planck equation
ith homogeneous initial and boundary conditions. If the forcing

unction in this simplified Fokker–Planck equation is sufficiently
ell-behaved and if a fast-converging series expansion can be

ound for the space-derivative of the density of the simple model,
he solution to this PDE could then be approximated with high
recision using a Crank–Nicolson scheme. Future work should
xplore this possibility further.
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ppendix A

runcation criterion for space-derivative of F̂v0 (t, x)

The solution to the PDE (7) with constant drift function v(x, t)
= v̂0 and diffusion coefficient σ̂ is given by the series Gondan
et al. (2014)

F̂v̂0 (x̂, t̂) = e−
v̂0 x̂
2σ̂ −

v̂20 t̂
4σ̂

∞∑
k=0

(−1)kϕ
(

rk
√

2σ̂ t̂

)
×

(
M
(
rk − v̂0 t̂
√

2σ̂ t̂

)
+ M

(
rk + v̂0 t̂
√

2σ̂ t̂

))
.

To obtain a series expansion for the space-derivative ∂x̂F̂v̂0 , we
ifferentiate the series term-by-term and simplify

x̂F̂v̂0 = 2e−
v̂0 x̂
2σ̂ −

v̂20 t̂
4σ̂

∞∑
k=0

(−1)k+1ϕ

(
rk

√

2σ̂ t̂

)
×

[
v̂0

2σ̂
M
(
rk + (−1)k+1v̂0 t̂

√

2σ̂ t̂

)
+

(−1)k
√

2σ̂ t̂

]
. (A.1)

To derive a truncation criterion for the series (A.1), we first
ound the product term⏐⏐⏐⏐(−1)k+1 v̂0

2σ̂
M
(
rk + (−1)k+1v̂0 t̂

√
2σ̂ t

)
−

1
√
2σ̂ t

⏐⏐⏐⏐
≤

|v̂0|

2σ̂

√
2π +

1
√

2σ̂ t̂
. (A.2)

his follows from an application of Markov’s inequality, 1 −

(y) ≤ e
y2
2 , which gives the upper bound

√
2π ≥ M(y) for

he Mills ratio. It now suffices to find a truncation criterion for
∞

k=0 ϕ

(
rk√
2σ̂ t

)
. We split the series into odd and even terms

∞

k=0

ϕ

(
rk

√
2σ̂ t

)
=

∞∑
k=0

ϕ

(
r2k

√
2σ̂ t

)
+

∞∑
k=0

ϕ

(
r2k+1
√
2σ̂ t

)
nd, using that

−
(2k−µ)2

2σ2 ≤

∫ k

e−
(2s−µ)2

2σ2 ds,

k−1

10
we get for K > 0
∞∑
k=K

ϕ

(
r2k

√

2σ̂ t̂

)
≤

∫
∞

K−1

1
√
2π

e−
(2s+x̂)2

4σ̂ t̂ ds

=

√

2σ̂ t̂
2

(
1 − Φ

(
2(K − 1) + x̂

√

2σ̂ t̂

))
(A.3)

and
∞∑
k=K

ϕ

(
r2k+1
√

2σ̂ t̂

)
≤

∫
∞

K

1
√
2π

e−
(2s−x̂)2

4σ̂ t̂ ds

=

√

2σ̂ t̂
2

(
1 − Φ

(
2K − x̂
√

2σ̂ t̂

))
. (A.4)

Combining the inequalities (A.3) and (A.4) with (A.2), we have the
truncation criterion for a given error tolerance ϵ:⏐⏐⏐⏐2e−

v̂0 x̂
2σ̂ −

v̂20 t̂
4σ̂

∞∑
k=2K

(−1)k+1ϕ

(
rk

√

2σ̂ t̂

)
×

[
v̂0

2σ̂
M
(
rk + (−1)k+1v̂0 t̂

√

2σ̂ t̂

)
+

(−1)k
√

2σ̂ t̂

] ⏐⏐⏐⏐
≤ e−

v̂0 x̂
2σ̂ −

v̂20 t̂
2σ̂

(
|v̂0|

√

π t̂
σ̂

+ 1

)

×

(
2 − Φ

(
2(K − 1) + x̂

√

2σ̂ t̂

)
− Φ

(
2K − x̂
√

2σ̂ t̂

))
(A.5)

≤ ϵ.

In this latter estimate of the truncation error, the largest com-
putational costs are incurred by the approximation of the normal
distribution function Φ . If the time and space domains are discre-
tised as t0 < t1 < · · · < tN and x0 < x1 < · · · < xN , respectively,
he truncation error will be largest at t = tN and x = x0. Eq. (A.5)
annot be solved for K explicitly. However, since Φ(z) tapers off
uickly as z → ∞, K can usually be found by computing (A.5) for
small number of values of K .

ppendix B

ATLAB code

The MATLAB code consists of three high-level functions that
erve as user interface. The function FokkerPlanck computes
n approximation to the solution F̂ of Eq. (7). This function takes
ive input arguments:

• an m × n matrix x_hat that specifies the space values x̂ at
which the approximate solution should be evaluated,

• an m × n matrix t_hat that specifies the time values t̂ at
which the approximate solution should be evaluated,

• a function handle v_hat for the space-time-dependent trans
formed drift function v̂(x̂, t̂),

• a positive real number sigma_hat that specifies the value
of σ̂ ,

• a positive real number tol that specifies the desired ap-
proximate error tolerance for the Crank–Nicolson approxi-
mation,

• and an optional positive integer iter_max that specifies
the maximum number of iteration for which the Crank–
Nicolson scheme should be run (default = 11).

he function FokkerPlanck is general in the sense that it can
ompute the approximation to F̂ for any model with space-time-
ependent drift function once the transformations in Section
ection 3.1 have been carried out.
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B

B

The function Examples implements the necessary transfor-
mations for the three example models discussed in the main text
and approximates the solution F of Eq. (3). Its input arguments
are:

• an m × n matrix x_rel that specifies the relative starting
point values xrel =

x−l(0)
u(0)+l(0) for which the approximate

solution should be evaluated,
• an m × n matrix t that specifies the time values t at which

the approximate solution should be evaluated,
• a positive real value T that specifies the boundary of the

time domain T ,
• a positive real value sigma that specifies the diffusion coef-

ficient σ ,
• a positive real number tol that specifies the desired ap-

proximate error tolerance for the Crank–Nicolson approxi-
mation,

• an integer modID taking the value

– 1 for the Ornstein–Uhlenbeck model,
– 2 for the model with hyperbolic urgency signal,
– 3 for the model with linear collapsing boundaries,

• and a vector parameters with the parameters of the exam-
ple model,

– (v0, β, a) for the Ornstein–Uhlenbeck model,
– (v0, v1, τ , a) for the model with hyperbolic urgency

signal,
– (v0, T∞, a) for the model with linear collapsing bound-

aries.

If we want to compute the values of the first-passage time
distribution for the Ornstein–Uhlenbeck model at x⃗rel = (0.1, 0.4)
and t⃗ = (0.2, 0.35, 0.5) with parameters (v0, β, a) = (1, 0.4, 1.2),
σ = 1, and error tolerance ϵ = 10−4, for instance, our function
call is

[x_rel, t] = meshgrid([0.1, 0.4], [0.2, 0.35, 0.5]);
T = max(t, [], ’all’);
sigma = 1;
tol = 1e-4;
modID = 1;
parameters = [1, 0.4, 1.2];
Examples(x_rel, t, T, sigma, tol, modID, parameters)

and we get as output

ans =
0.0274 0.1718
0.0915 0.3493
0.1394 0.4620

Next, assume we want to compute the values of the first-
passage time distribution for the model with the hyperbolic ur-
gency signal at x⃗rel = (0.1, 0.4) and t⃗ = (0.2, 0.35, 0.5) with
parameters (v0, v1, τ , a) = (1, 0.4, 0.7, 1.3), σ = 1, and error
tolerance ϵ = 10−4. Because the drift function of this model is
time-dependent, we need to solve Eq. (3) on the domain Ωt once
for each entry t of t⃗ and evaluate the approximate solution at the
right-hand boundary of the time domain. Hence, our function call
now is

[x_rel, t] = meshgrid([0.1, 0.4], [0.2, 0.35, 0.5]);
sigma = 1;
tol = 1e-4;
modID = 1;
parameters = [1, 0.4, 0.7, 1.3];
F = zeros(size(t));
11
for i = 1:3
F(i,:) = Examples(x_rel(i,:), t(i,:),...
t(i,1), sigma, tol, modID, parameters);

end

and we get as output

F =
0.0233 0.1694
0.0972 0.3767
0.1601 0.5157

Finally, assume we want to compute the first-passage time
distribution of the model with linear collapsing bounds at x⃗rel =

(0.3, 0.8) and t⃗ = (0.2, 0.35, 0.39) with parameters (v0, T∞, a) =

(1.2, 1, 1), σ = 1, and error tolerance ϵ = 10−4. Note that
for xrel = 0.8, the slowest response time t = 0.39 falls just
within the upper decision boundary. Because the boundaries of
this model are time-dependent, we again need to solve Eq. (3)
on the domain Ωt once for each entry t of t⃗ and evaluate the
approximate solution at the right-hand boundary of the time
domain. In this case our function call is

[x_rel, t] = meshgrid([0.3, 0.8], [0.2, 0.35, 0.39]);
sigma = 1;
tol = 1e-4;
modID = 3;
parameters = [1.2, 1, 1];
F = zeros(size(t));
for i = 1:3

F(:,i) = Examples(x_rel(:,i), t(:,i),...
t(1,i), sigma, tol, modID, parameters);

end

This gives as output

F =
0.3016 0.8469
0.4706 0.9158
0.4876 0.9224
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