283 research outputs found

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data

    Get PDF
    The COVID-19 pandemic has worldwide individual and socioeconomic consequences. Chest computed tomography has been found to support diagnostics and disease monitoring. A standardized approach to generate, collect, analyze, and share clinical and imaging information in the highest quality possible is urgently needed. We developed systematic, computer-assisted and context-guided electronic data capture on the FDA-approved mint LesionTM software platform to enable cloud-based data collection and real-time analysis. The acquisition and annotation include radiological findings and radiomics performed directly on primary imaging data together with information from the patient history and clinical data. As proof of concept, anonymized data of 283 patients with either suspected or confirmed SARS-CoV-2 infection from eight European medical centers were aggregated in data analysis dashboards. Aggregated data were compared to key findings of landmark research literature. This concept has been chosen for use in the national COVID-19 response of the radiological departments of all university hospitals in Germany

    Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity

    Get PDF
    Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC50 ∼2 × 10−12 M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance

    TRAIL treatment provokes mutations in surviving cells

    Get PDF
    Chemotherapy and radiotherapy commonly damage DNA and trigger p53-dependent apoptosis through intrinsic apoptotic pathways. Two unfortunate consequences of this mechanism are resistance due to blockade of p53 or intrinsic apoptosis pathways, and mutagenesis of non-malignant surviving cells which can impair cellular function or provoke second malignancies. Death ligand-based drugs, such as tumor necrosis factor-related apoptosis inducing ligand (TRAIL), stimulate extrinsic apoptotic signaling, and may overcome resistance to treatments that induce intrinsic apoptosis. As death receptor ligation does not damage DNA as a primary mechanism of pro-apoptotic action, we hypothesized that surviving cells would remain genetically unscathed, suggesting that death ligand-based therapies may avoid some of the adverse effects associated with traditional cancer treatments. Surprisingly, however, treatment with sub-lethal concentrations of TRAIL or FasL was mutagenic. Mutations arose in viable cells that contained active caspases, and overexpression of the caspase-8 inhibitor crmA or silencing of caspase-8 abolished TRAIL-mediated mutagenesis. Downregulation of the apoptotic nuclease caspase-activated DNAse (CAD)/DNA fragmentation factor 40 (DFF40) prevented the DNA damage associated with TRAIL treatment. Although death ligands do not need to damage DNA in order to induce apoptosis, surviving cells nevertheless incur DNA damage after treatment with these agents

    Effects of Aliskiren on Stroke in Rats Expressing Human Renin and Angiotensinogen Genes

    Get PDF
    OBJECTIVE: Pre-treatment with angiotensin receptor blockers is known to improve neurological outcome after stroke. This study investigated for the first time, whether the renin inhibitor aliskiren has similar neuroprotective effects. METHODS: Since aliskiren specifically blocks human renin, double transgenic rats expressing human renin and angiotensinogen genes were used. To achieve a systolic blood pressure of 150 or 130 mmHg animals were treated with aliskiren (7.5 or 12.5 mg/kg*d) or candesartan (1.5 or 10 mg/kg*d) via osmotic minipump starting five days before middle cerebral artery occlusion with reperfusion. Infarct size was determined by magnetic resonance imaging. mRNA of inflammatory marker genes was studied in different brain regions. RESULTS: The mortality of 33.3% (7 of 21 animals) in the vehicle group was reduced to below 10% by treatment with candesartan or aliskiren (p<0.05). Aliskiren-treated animals had a better neurological outcome 7 days post-ischemia, compared to candesartan (Garcia scale: 9.9±0.7 vs. 7.3±0.7; p<0.05). The reduction of infarct size in the aliskiren group did not reach statistical significance compared to candesartan and vehicle (24 h post-ischemia: 314±81 vs. 377±70 and 403±70 mm(3) respectively). Only aliskiren was able to significantly reduce stroke-induced gene expression of CXC chemokine ligand 1, interleukin-6 and tumor necrosis factor-alpha in the ischemic core. CONCLUSIONS: Head-to-head comparison suggests that treatment with aliskiren before and during cerebral ischemia is at least as effective as candesartan in double transgenic rats. The improved neurological outcome in the aliskiren group was blood pressure independent. Whether this effect is due to primary anti-inflammatory mechanisms has to be investigated further

    Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the BH3-only proteins Bim and Bid

    Get PDF
    Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells

    Targeting Tumour-Initiating Cells with TRAIL Based Combination Therapy Ensures Complete and Lasting Eradication of Multiple Myeloma Tumours In Vivo

    Get PDF
    Multiple myeloma (MM) remains an incurable disease despite improvements to available treatments and efforts to identify new drug targets. Consequently new approaches are urgently required. We have investigated the potential of native tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with doxorubicin, to induce apoptotic cell death in phenotypically distinct populations of myeloma cells in vitro and in vivo. The cytotoxic potential of TRAIL alone, and in combination with DOX, was assessed in vitro in purified CD138+ and CD138− cells from the MM cell lines and samples from patients with MM. Mouse xenografts obtained by implanting CD138− MM cells were used to assess the efficacy of TRAIL, alone and in combination with DOX, in vivo. CD138− cells were shown to be more resistant to the cytotoxic activity of TRAIL than CD138+ cells and have reduced expression of TRAIL death receptors. This resistance results in preferential killing of CD 138+ cells during exposure of MM culture to TRAIL. Furthermore, prolonged exposure results in the appearance of TRAIL-resistant CD138− cells. However, when TRAIL is combined with doxorubicin, this results in complete eradication of MM cells in vivo. Most importantly, this treatment successfully eliminates CD138− cells implicated in tumour initiation and growth maintenance. These findings may explain the failure of current therapies and offer a promising new approach in the quest to cure MM and disseminated cancers

    TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

    Get PDF
    BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer

    Analysis of Death Receptor 5 and Caspase-8 Expression in Primary and Metastatic Head and Neck Squamous Cell Carcinoma and Their Prognostic Impact

    Get PDF
    Death receptor 5 (DR5) and caspase-8 are major components in the extrinsic apoptotic pathway. The alterations of the expression of these proteins during the metastasis of head and neck squamous cell carcinoma (HNSCC) and their prognostic impact have not been reported. The present study analyzes the expression of DR5 and caspase-8 by immunohistochemistry (IHC) in primary and metastatic HNSCCs and their impact on patient survival. Tumor samples in this study included 100 primary HNSCC with no evidence of metastasis, 100 primary HNSCC with lymph node metastasis (LNM) and 100 matching LNM. IHC analysis revealed a significant loss or downregulation of DR5 expression in primary tumors with metastasis and their matching LNM compared to primary tumors with no evidence of metastasis. A similar trend was observed in caspase-8 expression although it was not statistically significant. Downregulation of caspase-8 and DR5 expression was significantly correlated with poorly differentiated tumors compared to moderately and well differentiated tumors. Univariate analysis indicates that, in HNSCC with no metastasis, higher expression of caspase-8 significantly correlated with better disease-free survival and overall survival. However, in HNSCC with LNM, higher caspase-8 expression significantly correlated with poorer disease-free survival and overall survival. Similar results were also generated when we combined both DR5 and caspase-8. Taken together, we suggest that both DR5 and caspase-8 are involved in regulation of HNSCC metastasis. Our findings warrant further investigation on the dual role of caspase-8 in cancer development
    corecore