13 research outputs found

    Development of scanning systems and a three-coordinate manipulator for the installation of a milking robot

    Get PDF
    In the course of the work, the authors developed a three-coordinate manipulator and a feedback system based on the udder profile scanner for the spatial orientation of the working body of the manipulator of the milking robotic installation. A significant advantage of the developed scanning system is the optimal design and acceptable accuracy of object detection. It was also demonstrated that the absolute error when moving the elements of the drive system of a three-coordinate manipulator does not exceed critical values and can be recommended for use in the design of a milking robotic installation

    Ultrafast optical ranging using microresonator soliton frequency combs

    Get PDF
    Light detection and ranging (LIDAR) is critical to many fields in science and industry. Over the last decade, optical frequency combs were shown to offer unique advantages in optical ranging, in particular when it comes to fast distance acquisition with high accuracy. However, current comb-based concepts are not suited for emerging high-volume applications such as drone navigation or autonomous driving. These applications critically rely on LIDAR systems that are not only accurate and fast, but also compact, robust, and amenable to cost-efficient mass-production. Here we show that integrated dissipative Kerr-soliton (DKS) comb sources provide a route to chip-scale LIDAR systems that combine sub-wavelength accuracy and unprecedented acquisition speed with the opportunity to exploit advanced photonic integration concepts for wafer-scale mass production. In our experiments, we use a pair of free-running DKS combs, each providing more than 100 carriers for massively parallel synthetic-wavelength interferometry. We demonstrate dual-comb distance measurements with record-low Allan deviations down to 12 nm at averaging times of 14 μ\mus as well as ultrafast ranging at unprecedented measurement rates of up to 100 MHz. We prove the viability of our technique by sampling the naturally scattering surface of air-gun projectiles flying at 150 m/s (Mach 0.47). Combining integrated dual-comb LIDAR engines with chip-scale nanophotonic phased arrays, the approach could allow widespread use of compact ultrafast ranging systems in emerging mass applications.Comment: 9 pages, 3 figures, Supplementary information is attached in 'Ancillary files

    Optimized unconventional superconductivity in a molecular Jahn-Teller metal

    Get PDF
    Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above Tc is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C603– electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of Tc with interfulleride separation, demonstrating molecular electronic structure control of superconductivity

    Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids

    Get PDF
    Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid–solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure

    Development of scanning systems and a three-coordinate manipulator for the installation of a milking robot

    No full text
    In the course of the work, the authors developed a three-coordinate manipulator and a feedback system based on the udder profile scanner for the spatial orientation of the working body of the manipulator of the milking robotic installation. A significant advantage of the developed scanning system is the optimal design and acceptable accuracy of object detection. It was also demonstrated that the absolute error when moving the elements of the drive system of a three-coordinate manipulator does not exceed critical values and can be recommended for use in the design of a milking robotic installation

    Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    Get PDF
    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached
    corecore