53 research outputs found
Phase transitions for -adic Potts model on the Cayley tree of order three
In the present paper, we study a phase transition problem for the -state
-adic Potts model over the Cayley tree of order three. We consider a more
general notion of -adic Gibbs measure which depends on parameter
\rho\in\bq_p. Such a measure is called {\it generalized -adic quasi Gibbs
measure}. When equals to -adic exponent, then it coincides with the
-adic Gibbs measure. When , then it coincides with -adic quasi
Gibbs measure. Therefore, we investigate two regimes with respect to the value
of . Namely, in the first regime, one takes for some
J\in\bq_p, in the second one . In each regime, we first find
conditions for the existence of generalized -adic quasi Gibbs measures.
Furthermore, in the first regime, we establish the existence of the phase
transition under some conditions. In the second regime, when we prove the existence of a quasi phase transition. It turns out that
if and \sqrt{-3}\in\bq_p, then one finds the existence
of the strong phase transition.Comment: 27 page
Next nearest neighbour Ising models on random graphs
This paper develops results for the next nearest neighbour Ising model on
random graphs. Besides being an essential ingredient in classic models for
frustrated systems, second neighbour interactions interactions arise naturally
in several applications such as the colour diversity problem and graphical
games. We demonstrate ensembles of random graphs, including regular
connectivity graphs, that have a periodic variation of free energy, with either
the ratio of nearest to next nearest couplings, or the mean number of nearest
neighbours. When the coupling ratio is integer paramagnetic phases can be found
at zero temperature. This is shown to be related to the locked or unlocked
nature of the interactions. For anti-ferromagnetic couplings, spin glass phases
are demonstrated at low temperature. The interaction structure is formulated as
a factor graph, the solution on a tree is developed. The replica symmetric and
energetic one-step replica symmetry breaking solution is developed using the
cavity method. We calculate within these frameworks the phase diagram and
demonstrate the existence of dynamical transitions at zero temperature for
cases of anti-ferromagnetic coupling on regular and inhomogeneous random
graphs.Comment: 55 pages, 15 figures, version 2 with minor revisions, to be published
J. Stat. Mec
- …