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Abstract

In the present article, we provide a new construction of measure, called p-adic quasi
Gibbs measure, for countable state of p-adic Potts model on the Cayley tree. Such a
construction depends on a parameter p and wights. In particular case, i.e., if p = expp,
the defined measure coincides with p-adic Gibbs measure. In this article, under some
condition on weights we establish the existence of p-adic quasi Gibbs measures
associated with the model. Note that this condition does not depend on values of
the prime p. An analogues fact is not valid when the number of spins is finite.
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1. Introduction
Interest in the physics of non-Archimedean quantum models [1-5] is based on the idea

that the structure of space-time for very short distances might conveniently be

described in terms of non-Archimedean numbers. One of the ways to describe this vio-

lation of the Archimedean axiom, is the using p-adic analysis. Numerous applications

of this analysis to mathematical physics have been proposed in [4,6-8]. It is known [8]

that a number of p-adic models in physics cannot be described using ordinary Kolmo-

gorov’s probability theory. New probability models–p-adic probability models were

investigated in [9-11]. In [12-14], the theory of stochastic processes with values in

p-adic and more general non-Archimedean fields having probability distributions with

non-Archimedean values has been developed. This gives a possibility to develop the

theory of statistical mechanics in the context of the p-adic theory, since it lies on the

base of the theory of probability and stochastic processes. The central problems of that

theory [15] is the study of infinite-volume Gibbs measures corresponding to a given

Hamiltonian, which also includes a description of the set of Gibbs measures. In most

cases such analysis depend on a specific properties of Hamiltonian, and complete

description is often a difficult problem. This problem, in particular, relates to a phase

transitions problem.

In [16,17], a notion of ultrametric Markovianity, which describes independence of con-

tributions to random field from different ultrametric balls has been introduced, and

showed that Gaussian random fields on general ultrametric spaces (which were related

with hierarchical trees), which were defined as a solution of pseudodifferential stochastic
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equation, satisfy the Markovianity. Some applications of the results to replica matrices,

related to general ultrametric spaces have been investigated in [18] (see also [19]).

In [20,21], we have developed of p-adic probability theory approaches to study q + 1-

state nearest-neighbor p-adic Potts model on Cayley tree (see [22]). We constructed

infinite volume p-adic Gibbs measures for the mentioned model, and moreover, estab-

lished the existence of a phase transition (here the phase transition means the exis-

tence of two distinct p-adic Gibbs measures for the given model). Further, in [23] we

have introduced a new kind of p-adic measures for the mentioned model, called p-adic

quasi Gibbs measure. For such a model, we investigated a phase transition phenomena

from the associated dynamical system point of view. Namely, we established that if q is

not divisible by p, then there occurs the quasi phase transition. Note that such kind of

measures present more natural concrete examples of p-adic Markov processes (see

[12], for definitions). In [24-26], we investigated a countable state p-adic Potts model

on the Cayley tree, a and provided a construction of p-adic Gibbs measures which

depends on weights l. Moreover, the uniqueness of such measures under certain con-

ditions to the weight was proved.

In this article, we continue our investigations on countable state p-adic Potts model.

Namely, we are going to provide a new construction of measure, called p-adic quasi

Gibbs measure, for the mentioned model on the Cayley tree. Such a construction

depends on a parameter p and wights {l(i)}iÎN. In particular case, i.e., if p = expp, the

defined measure coincides with p-adic Gibbs measure (see [24,25]). In this article,

under some condition on weights we establish the existence of p-adic quasi Gibbs

measures associated with the model. Note that this condition does not depend on

values of the prime p. An analogues fact is not valid when the number of spins is

finite. Moreover, our result extends the previous proved ones in [25,26]. Note that in

comparison to a real case, in a p-adic setting, à priori the existence of such kind of

measures for the model is not known, since there is not much information on topolo-

gical properties of the set of all p-adic measures defined even on compact spaces.

However, in the real case, there is the so called the Dobrushin’s Theorem [27,28]

which gives a sufficient condition for the existence of the Gibbs measure for a large

class of Hamiltonians. Note that when states are finite, then the corresponding p-adic

Potts models on the same trees have been studied in [23].

2. Preliminaries
Fix a prime number p, which throughout the article will be a fixed >3, and let ℚp

denotes the field of p-adic filed, formed by completing ℚ with respect to the unique

absolute value satisfying |p| = 1/p. The absolute value | · |, is non- Archimedean,

meaning that it satisfies the ultrametric triangle inequality |x + y|p ≤ max{|x|p, |y|p}.

Given a Î ℚp and r > 0 put

B (a, r) =
{
x ∈ Qp : |x − a|p < r

}
, S (a, r) =

{
x ∈ Qp : |x − a|p = r

}
.

The p-adic exponential is defined by

expp (x) =
∞∑
n=0

xn

n!
,

which converges for xÎB(0, p-1/(p-1)).
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Lemma 2.1. [24]If |ai|p ≤ 1, |bi|p ≤ 1, i = 1,..., n, then
∣∣∣∣∣

n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣
p

≤ max
i≤i≤n

{|ai − bi|p}

Note the basics of p-adic analysis, p-adic mathematical physics are explained in

[5,29].

Let (X, ℬ) be a measurable space, where ℬ is an algebra of subsets X. A function μ:

ℬ ®ℚp is said to be a p-adic measure if for any A1,..., An ⊂ ℬ such that Ai ∩ Aj = Ø

(i ≠ j) the equality holds

μ

⎛
⎝ n⋃

j=1

Aj

⎞
⎠ =

n∑
j=1

μ
(
Aj

)
.

A p-adic measure is called a probability measure if μ(X) = 1. For more detail infor-

mation about p-adic measures we refer to [9,10,30].

Let Γk = (V, L) be a semi-infinite Cayley tree of order k ≥ 1 with the root x0 (whose

each vertex has exactly k + 1 edges, except for the root x0, which has k edges). Here V

is the set of vertices and L is the set of edges. The vertices x and y are called nearest

neighbors and they are denoted by l = < x, y >if there exists an edge connecting them.

A collection of the pairs < x, x1 >,..., < xd-1, y >is called a path from the point x to the

point y. The distance d(x, y), x, y Î V, on the Cayley tree, is the length of the shortest

path from x to y. Let us set

Wn = {x ∈ V| d (x, x0) = n}, Vn =
n⋃

m=1

Wm, Ln =
{
l =< x, y >∈ L|x, y ∈ Vn

}
.

The set of direct successors of x is defined by

S (x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn. (2:1)

Observe that any vertex x ≠ x0 has k direct successors and x0 has k + 1.

Now we are going to introduce a coordinate structure in Γk. Every vertex x (except

for x0) of Γ
k has coordinates (i1,..., in), here im Î {1,..., k}, 1 ≤ m ≤ n and for the vertex

x0 we put. Ø. Namely, the symbol Ø constitutes level 0 and the sites (i1,..., in) form

level n of the lattice. In this notation for x Î Γk, x = (i1,..., in) we have

S (x) = {(x, i) : 1 ≤ i ≤ k} ,

here (x, i) means that (i1,..., in, i).

Let us define on Γk a binary operation ο: Γk × Γk ® Γk as follows: for any two ele-

ments x = (i1,..., in) and y = (j1,..., jm) put

x o y = (i1, . . . , in) ◦ (
j1 , . . . , jm

)
=

(
i1 , . . . , in, j1 , . . . , jm

)
(2:2)

and

x o x0 = x0 ◦ x = (i1 , . . . , in) ◦ (0) = (i1 , . . . , in) . (2:3)

By means of the defined operation Γk becomes a noncommutative semigroup with a

unit.
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Using this semigroup structure one defines translations τg: Γ
k ® Γk, g Î Γk by

τg (x) = g o x. (2:4)

It is clear that τ(0) = id.

Similarly, by means of τg one can define translations τ̃g : L → L of L. Namely,

τ̃g
(
< x, y >

)
=< τg (x) , τg

(
y
)

> .

Let G ⊂ Γk be a sub-semigroup of Γk and h: Γk ® ℝ be a function defined on Γk. We

say that h is G-periodic if h(τg(x)) = h(x) for all g Î G and x Î Γ2. Any Γk-periodic

function is called translation invariant. Put

Gk =
{
x ∈ �k : d

(
x, x0

) ≡ 0 (mod k)
}
, k ≥ 2 (2:5)

One can check that Gk is a sub-semigroup with a unit.

3. The p-adic Potts model
We consider the p-adic Potts model where spin takes values in the set F = {0, 1, 2, · · ·, }

and is assigned to the vertices of the tree Γk = (V, L). A configuration s on V is then

defined as a function x Î V ® s(x) Î F; in a similar manner one defines configurations

sn and s(n) on Vn and Wn, respectively. The set of all configurations on V (resp. Vn, Wn)

coincides with Ω = FV (resp. �Vn = �Vn , �wn = �Wn ). One can see that

�Vn = �Vn−1 × �Wn . Using this, for given configurations σn−1 ∈ �Vn−1 and

σ (n) ∈ �Wn
we define their concatenations by

σn−1 ∨ σ (n) = {{σn (x) , x ∈ Vn−1}, {σ (n) (
y
)
, y ∈ Wn}}.

It is clear that σn−1 ∨ σ (n) ∈ �Vn
.

The Hamiltonian Hn : �Vn → Qp of the p-adic countable state Potts model has the

form

Hn (σ ) =
∑

<x,y>∈ Ln

Nxyδσ(x),σ(y), n ∈ N, (3:1)

here s Î Ωn, Nxy Î N (x, y Î V) and δ is the Kronecker symbol.

We are going to construct p-adic quasi Gibbs measures for the model.

Let us consider a function h : x ∈ V → hx =
{
hi,x

}
i∈�

∈ Q�
p of x ∈ V \ {x(0)} .

Here Q�
p = {{xi}i∈� : xi ∈ Qp} .

Fix a sequence λ ∈ Q�
p such that

|λ (n) |p → 0 as n → ∞. (3:2)

Such kind of sequences are called weights.

Given n = 1, 2,... define a p-adic probability measure μ
(n)
h

on �Vn by

μ
(n)
h (σn) =

1

Z(h)
n

pHn(σn)
∏
x∈Wn

hσn(x),x

∏
x∈Vn

λ (σn (x)) (3:3)
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where p is any p-adic number such that |p|p ≤ 1 . In particular, it could be p = p .

Here, as before, sn: x Î Vn ® sn(x) Î F and Z(h)
n is the corresponding partition func-

tion:

Z(h)
n =

∑
σ∈�Vn

pHn(σ )
∏
x∈Wn

hσ (x),x

∏
x∈Vn

λ (σ (x)). (3:4)

One of the central results of the theory of probability concerns a construction of an

infinite volume distribution with given finite-dimensional distributions, which is called

Kolmogorov’s Theorem [31]. Therefore, in this article we are interested in the same

question but in a p-adic context. More exactly, we want to define a p-adic probability

measure μ on Ω which is compatible with defined ones μ
(n)
h

, i.e.,

μ (σ ∈ � : σ |Vn = σn) = μ
(n)
h (σn) , for all σn ∈ �Vn , n ∈ N. (3:5)

In general, à priori the existence such a kind of measure μ is not known, since there

is not much information on topological properties, such as compactness, of the set of

all p-adic measures defined even on compact spaces.b Note that certain properties of

the set of p-adic measures has been studied in [32,33], but those properties are not

enough to prove the existence of the limiting measure. Therefore, at a moment, we

can only use the p-adic Kolmogorov extension Theorem (see [12,34]) which based on

so called compatibility condition for the measures μ
(n)
h , n ≥ 1, i.e.,

∑
ω∈�Wn

μ
(n)
h (σn−1 ∨ ω) = μ

(n−1)

h (σn−1) , (3:6)

for any σn−1 ∈ �Vn−1 . This condition according to the theorem implies the existence

of a unique p-adic measure μ defined on Ω with a required condition (3.5). Note that

more general theory of p-adic measures has been developed in [35].

So, if for some function h the measures μ
(n)
h satisfy the compatibility condition, then

there is a unique p-adic probability measure, which we denote by μh, since it depends

on h. Such a measure μh is said to be a p-adic quasi Gibbs measure corresponding to

the p-adic Potts model. By QG(H) we denote the set of all p-adic quasi Gibbs measures

associated with functions h = {hxÎ V}. If there are at least two distinct p-adic quasi

Gibbs measures μ, ν Î QG(H) such that μ is bounded and ν is unbounded, then we

say that a phase transition occurs. By another words, one can find two different func-

tions s and h defined on N such that there exist the corresponding measures μs and

μh, for which one is bounded, another one is unbounded. If there are two different

functions s and h defined on N such that there exist the corresponding measures μs,

μh, and they are bounded, then we say there is a quasi phase transition.

Remark 3.1. Note that in [24] we considered the following sequence of p-adic mea-

sures defined by

μ
(n)
h (σn) =

1

Z̃(h)
n

expp

⎧⎨
⎩Hn (σn) +

∑
x∈Wn

hσn(x),x

⎫⎬
⎭

∏
x∈Vn

λ (σn (x)) (3:7)
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here as usual Z̃(h)
n is the corresponding normalizing factor. A limiting p-adic measures

generated by (3.7) was called p-adic Gibbs measure. Such kind of measures have been

studied in [24].

Now let us find for what kind of functions h = {hx: x Î V} the measures defined by

(3.3) would satisfy the compatibility condition (3.6). The following statement describes

conditions on h guaranteeing the compatibility condition for the measures μ
(n)
h .

Theorem 3.1. The measures μ
(n)
h , n = 1, 2, . . .satisfy the compatibility condition

(3.6) if and only if for any x Î V \ {x(0)} the following equation holds:

ĥi,x =
λ (i)
λ (0)

∏
y∈S(x)

Fi
(
ĥy; θxy

)
, i ∈ N (3:8)

here and below θxy = pNxy , a vector ĥ = {ĥi}i∈N ∈ QN
p is defined by a vector h = {hi}

iÎF as follows

ĥi =
hiλ (i)
h0λ (0)

, i ∈ N (3:9)

and a mapping F : QN
p → QN

p is F(x; θ) = {Fi (x; θ)}iÎN with

Fi (x; θ) =

(θ − 1) xi +
∞∑
j=1

xj + 1

∞∑
j=1

xj + θ

, x = {xi}i∈N, i ∈ N. (3:10)

The proof consists of checking the condition (3.6) for the measures (3.3) (cp.

[24,36]).

Remark 3.2. Note that thanks to non-Archimedeanity of the norm | · |p the series
∞∑
k=1

xk converges iff the sequence {xn} converges to 0 (see [29]). Therefore, in what fol-

lows we should assume that
∞∑
k=1

ĥk,x converges, otherwise the Equation (3.8) has no

sense.

Remark 3.3. In what follows, without loss of generality, we may assume that h0 = 1

and l(0) = 1. Otherwise, in (3.3) we multiply and divide the expression on the right

hand side by
∏

x∈Wn
h0,x

∏
x∈Vn

λ (0) , and after replacing hi by hi/h0 and l(k) by l(k)/l

(0), respectively, we get the desired equality.

Observation 3.1. Here we are going to underline a connection between q-state Potts

model with the defined one. First recall that q-state Potts model is defined by the same

Hamiltonian (3.1), but with the state space Fq = {0, 1,..., q - 1}. Similarly, one can

define p-adic quasi Gibbs measures for the q-state Potts model, here instead of the

weight {l(i)} we will take a collection {l(0), l(1),..., l(q - 1)} ⊂ ℚp.

Now consider countable Potts model with a weight {l(i)} such that

λ (k) = 0 for all k ≥ q, q > 1. (3:11)

In this case the corresponding p-adic quasi Gibbs measures will coincide with those

of q-state Potts model. Indeed, let

Mukhamedov Journal of Inequalities and Applications 2012, 2012:104
http://www.journalofinequalitiesandapplications.com/content/2012/1/104

Page 6 of 12



�c =
{
σ ∈ � : ∃j ∈ Z+ : σ

(
j
) ≥ q

}
�(q) =

{
σ ∈ � : σ

(
j
) ≤ q − 1 ∀j ∈ Z+

}

It is clear that �(q) = �Z+
q . Let μ be a p-adic quasi Gibbs measure of the countable

Potts model with the given weight corresponding to a solution hn = {hi, n}iÎF of (3.8).

From the definition (3.3) we see that the restriction of μ to Ωc is zero, i.e., μ⌈Ωc = 0.

Moreover, from (3.8) and (3.11) we conclude that hi, n = 0 for all i ≥ q. This means

that vectors h(q)
n = {hi,n}i∈�q

will be a solution of (3.8) corresponding to the q-state

Potts model. Therefore, the restriction of μ to Ω(q) coincides with p-adic quasi Gibbs

measure of q-state Potts model with a weight {l(0), l(1),..., l(q - 1)} corresponding to

a solution of h(q)
n

.

Hence, we conclude that under the condition (3.11) all p-adic quasi Gibbs measures

corresponding to countable Potts model are described by those measures of q-state

Potts model.

4. Existence of p-adic quasi Gibbs measure
In this section, we are going to provide a condition for the existence of the p-adic

quasi Gibbs measure.

Taking into account Remark 3.2, we consider the following space

c0 = {{xn}n∈N ⊂ Qp : |xn|p → 0 as n → ∞}

with a norm ‖x‖ = max
n

|xn|p . Define

Br = {{xn}n∈N ∈ c0 : ‖x‖ ≤ r}, r > 0.

It is clear that Br is a closed set.

Lemma 4.1. Let |θ|p ≥ 1. Then
∣∣Fi (x, θ) − Fi

(
y, θ

)∣∣
p ≤ ∥∥x − y

∥∥ for every x, y ∈ Bδ . (4:1)

Proof. Let x = (xi), y = (yi) Î Bδ, then it is clear that |xi|p ≤ δ and |yi|p ≤ δ for all i Î
N.

Therefore, the strong triangle inequality implies that
∣∣∣∣∣∣

∞∑
j=1

xj + θ

∣∣∣∣∣∣
p

= |θ |p,
∣∣∣∣∣∣

∞∑
j=1

yj + θ

∣∣∣∣∣∣
p

= |θ |p. (4:2)

From (3.10) one gets

∣∣Fi (x, θ) − Fi
(
y, θ

)∣∣
p =

|θ − 1|p
|θ |2p

∣∣∣∣∣∣
⎛
⎝ ∞∑

j =1

xj + θ

⎞
⎠ (

xi − yi
)
+ (1 − xi)

∞∑
j=1

(
xj − yj

)
∣∣∣∣∣∣
p

≤ 1
|θ |p

max

⎧⎪⎨
⎪⎩|θ |p

∣∣xi − yi
∣∣
p, |1 − xi|p

∣∣∣∣∣∣
∞∑
j=1

(
xj − yj

)
∣∣∣∣∣∣
p

⎫⎪⎬
⎪⎭

≤ max
i

∣∣xi − yi
∣∣
p

=
∥∥x − y

∥∥ .
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This completes the proof. □
Before going to Equation (3.8), let us first enumerate S(x) for any x Î V as follows S

(x) = {x1,..., xk}, here as before S(x) is the set of direct successors of x (see (2.1)). Using

this enumeration one can rewrite (3.8) by

ĥi,x = λ (i)
k∏

m=1

Fi
(
ĥxm, θi

)
, i ∈ N, for every x ∈ V \ {x(0)}. (4:3)

Now we can formulate the main result.

Theorem 4.2. Assume that Nxy ≤ 0 for all < x, y >Î L, i.e., |θxy|p ≥ 1 and for l the

condition

|λ (i)|p ≤ δ ∀i ∈ N, (4:4)

is satisfied. Then any two solution of (4.3) belonging to Bδ coincides with each other.

Proof. Assume that ĥ = {hx, xÎV\{x
0}}, ŝ ={ŝx, xÎV\{x

0}} be two solutions of (4.3).

Now we are going to show that they coincide with each other. Indeed, let x Î V\{x(0)}

be an arbitrary vertex. Using Lemma 2.1 from (4.3) one can find

∣∣∣ĥi,x − ŝi,x
∣∣∣
p

≤ |λ (i)|p max
1≤m≤k

{∣∣∣Fi(ĥxm))i − Fi
(
ŝxm

)∣∣∣
p

}
,

which with (4.1) and (4.4) implies that
∥∥∥ĥx − ŝx

∥∥∥ ≤ δ max
1≤m≤k

{∥∥∥ĥxm − ŝxm
∥∥∥}

(4:5)

Now take an arbitrary ε >0. Let n0 Î N such that 1/pn0 < ε . Iterating (4.5) n0 times

one gets ||ĥx-ŝx|| <ε.

Hence, from the arbitrariness of ε we obtain ĥx = ŝx for every x Î V \ {x(0)}. This

completes the proof. □
The provided theorem states, if Equation (4.3) has solution belonging to Bδ, then it is

unique. But, in general, we do not whether the equation has a solution or not. Below,

we provide a sufficient condition for the existence of solution of (4.3).

Remark 4.1. The proved Theorem extends the main results of [25,26] to more gen-

eral kind of measures, since there it was taken p = expp .

4.1. Homogeneous case

In this subsection, we shall assume that Nxy: = N for all < x, y >Î Ł. Namely, we want

to consider homogeneous case.

Recall that a function h = {hx}x∈V\{x0} is called translation-invariant if hτx(y) = hy for

all x, y Î V \ {x0}. Let us restrict ourselves to the description of translation-invariant

solutions of (3.8), namely hx = h(= (h0, h1,...,)) for all x Î V.

Define the following mapping

(Fθ (x))i = λ (i) (Fi (x, θ))k, i ∈ N, (4:6)

where x = {xn} Î c0. Here, θ = pN. Due to Remark 3.2, the mapping ℱθ is well

defined.
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Theorem 4.3. Let N ≤ 0, i.e., |θ|p ≥ 1. Assume that for l the condition (4.4) is satis-

fied. Then ℱθ(Bδ) ⊂ Bδ, and∥∥Fθ (x) − Fθ

(
y
)∥∥ ≤ δ

∥∥x − y
∥∥ for every x, y ∈ Bδ . (4:7)

Proof. Let x = (xi), y = (yi) Î Bδ. Then from (3.10) with (4.2) we have

|Fi (x, θ)|p =

∣∣∣∣∣θxi +
∞∑

j=1,j�=i
xj + 1

∣∣∣∣∣
p

|θ | ≤ max{|θ |p|xi|p, 1}
|θ |p ≤ 1

(4:8)

this with (4.6) yields that ℱθ(Bδ) ⊂ Bδ.

Now using (4.1), (4.6), and (4.8) we obtain

∥∥Fθ (x) − Fθ

(
y
)∥∥ = max

i
|λ (i)|p max

i

∣∣∣(Fi (x, θ))k − (
Fi

(
y, θ

))k∣∣∣
p

≤ δ
∣∣Fi (x, θ) − Fi

(
y, θ

)∣∣
p max

i

∣∣∣∣∣
k−1∑
�=0

Fk−�
i (x, θ) F�

i

(
y, θ

)∣∣∣∣∣
p

≤ δ
∥∥x − y

∥∥ .
This completes the proof. □
Remark 4.2. We should stress that if N >0 then the similar methods are no longer

applicable for Fθ, therefore, it needs other kind of techniques. So, such a case will be

considered elsewhere.

Now thanks to Lemma 4.3 we can apply the fixed point theorem to ℱθ, which

implies the existence of unique fixed point x0 Î Bδ. This, according to Theorem 4.2,

means that there exists a unique solution of (3.8). Hence, due to Theorem 3.1, such a

solution defines the p-adic quasi Gibbs measure μ0.

Remark 4.3. Let us emphasize the following notes:

(a) Note that in [23] we have proved for the q+1-state Potts model the p-adic quasi

Gibbs measure is unique if q and p are relatively prime. Therefore, the proved The-

orem 4.2 shows the difference between finite and countable state Potts models.

Moreover, in the real case such kind of result is unknown (see [36,37]).

(b) We also should stress that the condition (4.4) is important. If we replace δ with

1, then Theorem 4.2 may not be valid. Namely, in that case it may occur a quasi

phase transition. Indeed, if l(1) = l(2) = 1 and l(k) = 0 for every k ≥ 3, then

clearly (4.4) is not satisfied. On the other hand, our model reduces to 3-state Potts

model. For such a model in [23] the existence of the quasi phase transition has

been proved at p = 2.

4.2. Periodic case

In this section, we consider when Nxy is Gm-periodic. This means that Nτg(x)τg(y)
= Nxy

for all g Î Gm and x, y Î Γm. Therefore, let us denote

θi = pNxy , if d
(
x, x0

) ≡ i (modm) , i = 0, . . . , m − 1.
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We want to find Gm-periodic solution of (3.8). Recall that a function

h = {hx}x∈V∞\{x0} is called Gm-periodic if hτg(x) = hx for all g Î Gm, x Î V \ {x0}. Note

that if h = {hx} is a Gk-periodic, then it can be defined by a k-collection of vectors

(h0,..., hk-1), where hi = {h(i)
j }i∈N , i.e., hx = hi, if d(x, x

0) ≡ i(mod m), i = 0,..., k - 1.

Then Equation (3.8) is reduced to the following one

⎧⎪⎨
⎪⎩
h(i)
j = λj

(
Fj

(
h(i+1), θi+1

))k
, i = 0, . . . , m − 2

h(m−1)

j = λj

(
Fj

(
h(0), θ0

))k
,

j ∈ N (4:9)

Hence, define the following mapping

(H (x)) = Fθm−1

(Fθm−2

(· · · (Fθ0 (x)
) · · · )) (4:10)

where x = {xn} Î c0.

It is clear that the fixed point of (4.10) defines a solution of (4.9)

Theorem 4.4. Let |θi|p ≥ 1, i = 0,..., m - 1. Assume that for l the condition (4.4) is

satisfied. Then ℋ (Bδ) ⊂ Bδ, and∥∥H (x) − H (
y
)∥∥ ≤ δm

∥∥x − y
∥∥ for every x, y ∈ Bδ . (4:11)

The proof immediately follows from Theorem 4.3.

Consequently, Theorem 4.4 allows us to apply the fixed point theorem to ℋ, which

implies the existence of unique fixed point x0 Î Bδ. This, according to Theorem 4.2,

means that there exists a unique solution of (3.8). Hence, due to Theorem 3.1, such a

solution defines the p-adic quasi Gibbs measure μm.

5. Conclusion
In the present study, we have provided a new construction of measure, called p-adic

quasi Gibbs measure, for countable state p-adic Potts model on the Cayley tree. Note

that the construction depends on a parameter p and wights {l(i)}iÎN. In particular case,

i.e., if p = expp , the defined measure coincides with p-adic Gibbs measure (see

[24,25]). In this article, under some condition on weights we proved the existence of

p-adic quasi Gibbs measures associated with the model. Note that this condition does

not depend on values of the prime p. Moreover, our result extends the previous proved

ones in [25,26]. An analogues fact is not valid when the number of spins is finite. We

should stress that when states are finite and r = p, then the corresponding p-adic

quasi Gibbs measures have been investigated in [23].

Endnotes
aThe classical (real value) counterparts of such models were considered in [15,36]. bIn

the real case, when the state space is compact, then the existence follows from the

compactness of the set of all probability measures (i.e., Prohorov’s Theorem). When

the state space is non-compact, then there is a Dobrushin’s Theorem [27,28] which

gives a sufficient condition for the existence of the Gibbs measure for a large class of

Hamiltonians.
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