99 research outputs found

    Study of Leishmania pathogenesis in mice : experimental considerations

    Get PDF
    Although leishmaniases are endemic in 98 countries, they are still considered neglected tropical diseases. Leishmaniases are characterized by the emergence of new virulent and asymptomatic strains of Leishmania spp. and, as a consequence, by a very diverse clinical spectrum. To fight more efficiently these parasites, the mechanisms of host defense and of parasite virulence need to be thoroughly investigated. To this aim, animal models are widely used. However, the results obtained with these models are influenced by several experimental parameters, such as the mouse genetic background, parasite genotype, inoculation route/infection site, parasite dose and phlebotome saliva. In this review, we propose an update on their influence in the two main clinical forms of the disease: cutaneous and visceral leishmaniases

    Circulating Levels of Adiponectin, Leptin, Fetuin-A and Retinol-Binding Protein in Patients with Tuberculosis: Markers of Metabolism and Inflammation

    Get PDF
    BACKGROUND: Wasting is known as a prominent feature of tuberculosis (TB). To monitor the disease state, markers of metabolism and inflammation are potentially useful. We thus analyzed two major adipokines, adiponectin and leptin, and two other metabolic markers, fetuin-A and retinol-binding protein 4 (RBP4). METHODS: The plasma levels of these markers were measured using enzyme-linked immunosorbent assays in 84 apparently healthy individuals (=no-symptom group) and 46 patients with active pulmonary TB around the time of treatment, including at the midpoint evaluation (=active-disease group) and compared them with body mass index (BMI), C-reactive protein (CRP), chest radiographs and TB-antigen specific response by interferon-γ release assay (IGRA). RESULTS: In the no-symptom group, adiponectin and leptin showed negative and positive correlation with BMI respectively. In the active-disease group, at the time of diagnosis, leptin, fetuin-A and RBP4 levels were lower than in the no-symptom group [adjusted means 2.01 versus 4.50 ng/ml, P<0.0001; 185.58 versus 252.27 µg/ml, P<0.0001; 23.88 versus 43.79 µg/ml, P<0.0001, respectively]. High adiponectin and low leptin levels were associated with large infiltrates on chest radiographs even after adjustment for BMI and other covariates (P=0.0033 and P=0.0020). During treatment, adiponectin levels increased further and then decreased. Leptin levels remained low. Initial low levels of fetuin-A and RBP4 almost returned to the normal reference range in concert with reduced CRP. CONCLUSIONS: Our data and recent literature suggest that low fat store and underlying inflammation may regulate these metabolic markers in TB in a different way. Decreased leptin, increased adiponectin, or this ratio may be a promising marker for severity of the disease independent of BMI. We should further investigate pathological roles of the balance between these adipokines

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    TOXOPLASMOSIS IN MEXICO: EPIDEMIOLOGICAL SITUATION IN HUMANS AND ANIMALS

    Full text link

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program

    European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study.

    Get PDF
    The objectives of this study were to assess Candida spp. distribution and antifungal resistance of candidaemia across Europe. Isolates were collected as part of the third ECMM Candida European multicentre observational study, conducted from 01 to 07-07-2018 to 31-03-2022. Each centre (maximum number/country determined by population size) included ∼10 consecutive cases. Isolates were referred to central laboratories and identified by morphology and MALDI-TOF, supplemented by ITS-sequencing when needed. EUCAST MICs were determined for five antifungals. fks sequencing was performed for echinocandin resistant isolates. The 399 isolates from 41 centres in 17 countries included C. albicans (47.1%), C. glabrata (22.3%), C. parapsilosis (15.0%), C. tropicalis (6.3%), C. dubliniensis and C. krusei (2.3% each) and other species (4.8%). Austria had the highest C. albicans proportion (77%), Czech Republic, France and UK the highest C. glabrata proportions (25-33%) while Italy and Turkey had the highest C. parapsilosis proportions (24-26%). All isolates were amphotericin B susceptible. Fluconazole resistance was found in 4% C. tropicalis, 12% C. glabrata (from six countries across Europe), 17% C. parapsilosis (from Greece, Italy, and Turkey) and 20% other Candida spp. Four isolates were anidulafungin and micafungin resistant/non-wild-type and five resistant to micafungin only. Three/3 and 2/5 of these were sequenced and harboured fks-alterations including a novel L657W in C. parapsilosis. The epidemiology varied among centres and countries. Acquired echinocandin resistance was rare but included differential susceptibility to anidulafungin and micafungin, and resistant C. parapsilosis. Fluconazole and voriconazole cross-resistance was common in C. glabrata and C. parapsilosis but with different geographical prevalence
    corecore