494 research outputs found

    Manipulating soil microbial communities in extensive green roof substrates

    Get PDF
    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated,we added mycorrhizal fungi and a microbial mixture (‘compost tea’) to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growingmedia type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition

    An Instrumental Variable Evaluation of Antidepressant Use on Employment Among HIV-Infected Women Using Highly-Active Antiretroviral Therapy in the United States: 1996-2004

    Get PDF
    This paper examines the effect of antidepressant use on the likelihood of being employed among HIV-positive women receiving highly active antiretroviral therapy (HAART) in the United States from 1994 to 2004. We use instrumental variables to predict antidepressant use independently of outcomes; thus, addressing potential sources of bias -- more depressed women are more likely to receive antidepressant treatment, but they are also more likely to be unemployed. The results show that antidepressant use has a positive effect on the employment probability of women living with HIV. The proposed instrumental variables can be used to identify antidepressant use in the WIHS population. Among women receiving HAART, and controlling for individual and local area labor market characteristics, the use of antidepressants is associated with a higher probability of being employed.

    Chemiluminescence from the reaction of tin(II) with tris(2,2\u27-bipyridyl)ruthenium(III)

    Full text link
    Unlike many other metal and metalloid ions, tin(II) elicits intense, analytically useful chemiluminescence upon reaction with tris(2,2΄-bipyridyl)ruthenium(III) in acidic aqueous solution. This finding provides new insight into the nature of this widely used reagent and has enabled the first direct, selective determination of a metal ion with tris(2,2΄-bipyridyl)ruthenium(III)

    Using recycled aggregates in green roof substrates for plant diversity

    Get PDF
    Extensive green roofs are becoming a popular tool for restoring green infrastructure in urban areas, particularly biodiverse habitats such as post-industrial/brownfield sites. This study investigated the use of six recycled lightweight aggregates and combinations of them in green roof growing substrate, to determine their effectiveness for enhancing plant abundance and species diversity. In two separate experiments, we examined the roles of substrate type and depth on the establishment of a perennial wildflower mix over a 15-month period. We found that some of the alternative substrates are comparable to the widely used crushed red brick aggregate (predominantly found in commercial green roof growing substrate) for supporting plant establishment. For some materials such as clay pellets, there was increased plant coverage and a higher number of plant species than in any other substrate. Substrates that were produced from a blend of two or three aggregate types also supported higher plant abundance and diversity. Generally, increasing substrate depth improved plant establishment, however this effect was not consistent across substrates. We conclude that recycled materials may be viable constituents of growing substrate for green roofs and they may improve green roof resilience, through increased plant cover and diversity. The results could provide evidence to support the construction of mosaic habitat types on single roofs using various substrate blends

    Impact of Root Herbivory on Grassland Community Structure: From Landscape to Microscale

    Get PDF
    Root herbivores are an important functional group in grassland ecosystems. Whilst there is a plethora of information on their impact as pests in productive grassland, few studies of their impact on biodiversity in upland grassland have been made. Root herbivores act in a number of ways, they reduce host plant biomass, alter root architecture, change root exudation patterns and increase water stress in the plant. Root herbivores may change above ground plant diversity, both through direct removal of plant species and through reduction in competitive ability of some species, through their feeding. In addition, we postulate that root herbivores affect soil microbial communities through changes in root exudation

    Soil Biodiversity, Root Herbivory and Carbon and Nitrogen Cycling in Grassland Soils

    Get PDF
    This paper describes research on the relationships between grassland management practices and the diversity of biological communities in soil. Observations are being made in field trials with applications of nitrogen and lime and of insecticide to an original diverse sward and to a single species grass re-seed. The treatments are designed to produce different degrees of diversity in communities of soil animals and microbes. Assessments are being made over three years of the effects on the populations, activity and diversity of root-feeding animals, arbuscular mycorrhizal fungi, soil bacteria, fungi and micro fauna, including nonplant feeding nematodes. Associated laboratory experiments assess the effects of root herbivores with different feeding sites and mechanisms on the quality and quantity of rhizosphere deposition and it relationship to microbial communities. In this way, we shall develop an understanding of the relationships between root-herbivory and soil biodiversity and between of biodiversity and soil energy and nutrient transformations

    Can arbuscular mycorrhizal fungi be used to control the undesirable grass Poa annua on golf courses

    Get PDF
    Summary 1. Poa annua (annual meadow-grass or annual bluegrass) is the most problematic weed of temperate zone golf putting greens. In the UK there are no chemicals approved for its control, although several herbicides and plant growth regulators are available in the USA. Reducing P. annua levels in ®ne turf would greatly reduce the heavy reliance on pesticides and water that currently exists. 2. This paper reports on an observational and a manipulative study in golf putting greens, aimed at determining whether arbuscular mycorrhizal (AM) fungi have any potential for the reduction of this weed in ®ne turf. 3. All 18 greens on three golf courses were sampled, and in two courses a negative relation between AM fungi and P. annua abundance was found, upholding previous results. In greens where AM fungi were relatively common (as measured by root colonization), P. annua was rare, and vice versa. Furthermore, when the fungi were common, abundance of the desirable turfgrass Agrostis stolonifera was greater. 4. Two explanations are suggested for these relations, a competitive one, in which AM fungi alter the balance of competition between the two grasses, and an antagonistic one, in which the fungi may directly reduce the growth of P. annua. 5. In a manipulative experiment, where mycorrhizal inoculum was added to a golf green, the colonization level of A. stolonifera roots was enhanced, as was the abundance of this grass. Furthermore, there was a suggestion that adding inoculum could decrease the abundance of P. annua. 6. AM fungi have the potential to be a much more environmentally sound method of P. annua control in sports turf than the currently used chemicals

    Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system

    Get PDF
    The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct
    • …
    corecore