252 research outputs found

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    The structure of epitaxial V2O3 films and their surfaces : a medium energy ion scattering study

    Get PDF
    Medium energy ion scattering, using 100 keV H+ incident ions, has been used to investigate the growth of epitaxial films, up to thicknesses of ~200 Å, of V2O3 on both Pd(111) and Au(111). Scattered-ion energy spectra provide a measure of the average film thickness and the variations in this thickness, and show that, with suitable annealing, the crystalline quality is good. Plots of the scattering yield as a function of scattering angle, so-called blocking curves, have been measured for two different incidence directions and have been used to determine the surface structure. Specifically, scattering simulations for a range of different model structures show poor agreement with experiment for half-metal (….V’O3V) and vanadyl (….V’O3V=O) terminations, with and without surface interlayer relaxations. However, good agreement with experiment is found for the modified oxygen-termination structure, first proposed by Kresse et al., in which a subsurface V half-metal layer is moved up into the outermost V buckled metal layer to produce a VO2 overlayer on the underlying V2O3, with an associated layer structure of ….O3VV’’V’O3

    Metastable precursors during the oxidation of the Ru(0001) surface

    Full text link
    Using density-functional theory, we predict that the oxidation of the Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in two-dimensional islands between the first and second substrate layer. This leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal. Continued oxidation results in the formation and stacking of more of these trilayers, which unfold into the RuO_2(110) rutile structure once a critical film thickness is exceeded. Along this oxidation pathway, we identify various metastable configurations. These are found to be rather close in energy, indicating a likely lively dynamics between them at elevated temperatures, which will affect the surface chemical and mechanical properties of the material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Stability of sub-surface oxygen at Rh(111)

    Full text link
    Using density-functional theory (DFT) we investigate the incorporation of oxygen directly below the Rh(111) surface. We show that oxygen incorporation will only commence after nearly completion of a dense O adlayer (\theta_tot = 1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested octahedral sub-surface site occupancy, inducing a site-switch of the on-surface species from fcc to hcp sites, is indeed found to be a rather low energy structure. Our results indicate that at even higher coverages oxygen incorporation is followed by oxygen agglomeration in two-dimensional sub-surface islands directly below the first metal layer. Inside these islands, the metastable hcp/octahedral (on-surface/sub-surface) site combination will undergo a barrierless displacement, introducing a stacking fault of the first metal layer with respect to the underlying substrate and leading to a stable fcc/tetrahedral site occupation. We suggest that these elementary steps, namely, oxygen incorporation, aggregation into sub-surface islands and destabilization of the metal surface may be more general and precede the formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)

    Full text link
    We have performed high resolution XPS experiments of the Ru(0001) surface, both clean and covered with well-defined amounts of oxygen up to 1 ML coverage. For the clean surface we detected two distinct components in the Ru 3d_{5/2} core level spectra, for which a definite assignment was made using the high resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2), p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level peaks which are shifted up to 1 eV to higher binding energies. Very good agreement with density functional theory calculations of these Surface Core Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru SCLSs turns out to be the number of directly coordinated O atoms. Since the calculations permit the separation of initial and final state effects, our results give valuable information for the understanding of bonding and screening at the surface, otherwise not accessible in the measurement of the core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Potential, core-level and d band shifts at transition metal surfaces

    Full text link
    We have extended the validity of the correlation between the surface 3d-core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d transition metal series and to the neighboring elements Sr and Ag via accurate first-principles calculations. We find that the correlation is quasilinear and robust with respect to the differencies both between initial and final-state calculations of the SCLS's and two distinct measures of the SDBS's. We show that despite the complex spatial dependence of the surface potential shift (SPS) and the location of the 3d and 4d orbitals in different regions of space, the correlation exists because the sampling of the SPS by the 3d and 4d orbitals remains similar. We show further that the sign change of the SCLS's across the transition series does indeed arise from the d band-narrowing mechanism previously proposed. However, while in the heavier transition metals the predicted increase of d electrons in the surface layer relative to the bulk arises primarily from transfers from s and p states to d states within the surface layer, in the lighter transition metals the predicted decrease of surface d electrons arises primarily from flow out into the vacuum.Comment: RevTex, 22 pages, 5 figures in uufiles form, to appear in Phys.Rev.

    Tdap-Hpv Vaccination Bundling in the Usa: Trends, Predictors, and Implications For Vaccine Series Completion

    Get PDF
    The Centers for Disease Control and Prevention (CDC) promotes taking a \u27bundling approach\u27 (i.e., administering Tetanus, diphtheria toxoids, and acellular pertussis [Tdap] and human papillomavirus [HPV] vaccines in the same way and on the same day) for adolescent vaccinations. Recent trends and patterns in Tdap-HPV vaccination bundling in the USA remain undocumented. In addition, the implications of bundling Tdap-HPV vaccination for HPV vaccine series completion remain unknown. to address these critical knowledge gaps, we performed a retrospective study using a nationwide sample of privately insured adolescents (Optum\u27s de-identified Clinformatics® Data Mart Database). Tdap-HPV vaccination bundling (per 100 Tdap vaccination encounters) during 2014-2018 was estimated overall, for 50 states, and by adolescents\u27 age, sex, and provider specialties. Survival model estimated the likelihood of series completion among 9-14-year-old adolescents. From 2014 to 2018, 560,806 adolescents received a Tdap vaccine of which 172,604 (30.8%) received the HPV vaccines on the same day. Tdap-HPV vaccination bundling (per 100 Tdap vaccinations) increased nationally, from 22.9 in 2014 to 39.1 in 2018 (

    Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2

    Get PDF
    The phase diagram of surface structures for the model catalyst RuO2(110) in contact with a gas environment of O2 and CO is calculated by density-functional theory and atomistic thermodynamics. Adsorption of the reactants is found to depend crucially on temperature and partial pressures in the gas phase. Assuming that a catalyst surface under steady-state operation conditions is close to a constrained thermodynamic equilibrium, we are able to rationalize a number of experimental findings on the CO oxidation over RuO2(110). We also calculated reaction pathways and energy barriers. Based on the various results the importance of phase coexistence conditions is emphasized as these will lead to an enhanced dynamics at the catalyst surface. Such conditions may actuate an additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Highly Active and Stable Ni/La-Doped Ceria Material for Catalytic CO2Reduction by Reverse Water-Gas Shift Reaction

    Get PDF
    [EN] The design of an active, effective, and economically viable catalyst for CO2 conversion into value-added products is crucial in the fight against global warming and energy demand. We have developed very efficient catalysts for reverse water-gas shift (rWGS) reaction. Specific conditions of the synthesis by combustion allow the obtention of macroporous materials based on nanosized Ni particles supported on a mixed oxide of high purity and crystallinity. Here, we show that Ni/La-doped CeO2 catalysts─with the "right"Ni and La proportions─have an unprecedented catalytic performance per unit mass of catalyst for the rWGS reaction as the first step toward CO2 valorization. Correlations between physicochemical properties and catalytic activity, obtained using a combination of different techniques such as X-ray and neutron powder diffraction, Raman spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, electron microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the nature of the active sites. This finding offers a fundamental basis for developing economical catalysts that can be effectively used for CO2 reduction with hydrogen. A catalyst based on Ni0.07/(Ce0.9La0.1Ox)0.93 shows a CO production of 58 × 10-5 molCO·gcat-1·s-1 (700 °C, H2/CO2 = 2; selectivity to CO > 99.5), being stable for 100 h under continuous reaction.We acknowledge the financial support of the Spanish Ministry of Science and Innovation (PID2021-123287OB-I00, PID2021-122477-OB-I00, PID2021-128915NB-I00, and RTI2018-101604-B-I00) and of the CSIC through the i-LINK 2021 program (LINKA20408). Financial support has also been received from AEI-MINECO/FEDER (Nympha Project, PID2019-106315RB-I00), “Comunidad de Madrid” regional government, and the European Structural Funds (FotoArt-CM project, S2018/NMT-4367). Authors also acknowledge financial support from the grant PLEC2021-007906 funded by MCIN/AEI/10.13039/501100011033 and the “European Union NextGenerationEU/PRTR”. We are grateful to ILL (France) for making all facilities available. This project also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 832121. Computer time provided by the RES (Red Española de Supercomputación) resources at the MareNostrum 4 (BSC, Barcelona) node and the DECI resources at the BEM cluster of the WCSS based in Poland with the support from PRACE aislb is acknowledged

    Electrons in High-Tc Compounds: Ab-Initio Correlation Results

    Full text link
    Electronic correlations in the ground state of an idealized infinite-layer high-Tc compound are computed using the ab-initio method of local ansatz. Comparisons are made with the local-density approximation (LDA) results, and the correlation functions are analyzed in detail. These correlation functions are used to determine the effective atomic-interaction parameters for model Hamiltonians. On the resulting model, doping dependencies of the relevant correlations are investigated. Aside from the expected strong atomic correlations, particular spin correlations arise. The dominating contribution is a strong nearest neighbor correlation that is Stoner-enhanced due to the closeness of the ground state to the magnetic phase. This feature depends moderately on doping, and is absent in a single-band Hubbard model. Our calculated spin correlation function is in good qualitative agreement with that determined from the neutron scattering experiments for a metal.Comment: 21pp, 5fig, Phys. Rev. B (Oct. 98
    corecore