Abstract

Electronic correlations in the ground state of an idealized infinite-layer high-Tc compound are computed using the ab-initio method of local ansatz. Comparisons are made with the local-density approximation (LDA) results, and the correlation functions are analyzed in detail. These correlation functions are used to determine the effective atomic-interaction parameters for model Hamiltonians. On the resulting model, doping dependencies of the relevant correlations are investigated. Aside from the expected strong atomic correlations, particular spin correlations arise. The dominating contribution is a strong nearest neighbor correlation that is Stoner-enhanced due to the closeness of the ground state to the magnetic phase. This feature depends moderately on doping, and is absent in a single-band Hubbard model. Our calculated spin correlation function is in good qualitative agreement with that determined from the neutron scattering experiments for a metal.Comment: 21pp, 5fig, Phys. Rev. B (Oct. 98

    Similar works

    Full text

    thumbnail-image