9 research outputs found

    Voluntary wheel running: patterns and physiological effects in mice

    No full text
    Exercise can prevent and improve the pathophysiology of diseases and promote healthy aging. Thus, understanding the mechanisms that regulate the beneficial effects of exercise may lead to the development of new strategies to enhance quality of life and to counteract chronic diseases. Voluntary wheel running is an interesting model to study the effects of exercise in mice. Compared to forced treadmill exercise, voluntary wheel running presents several advantages such as: 1) running pattern is similar to natural running behavior of mice; 2) it is performed under non-stressed conditions, according to the rhythmicity of the animal; 3) it does not require direct interference from the researcher, and can be easily applied in long-term studies. Mice run spontaneously when given access to running wheels, for a total distance of ∼4 to 20 km per day and a total activity time of ∼3 to 7 hours a day. Hence, voluntary wheel running can result in robust endurance-like adaptation in skeletal and cardiac muscles and protect from sarcopenia. However, due to the lack of control over exercise parameters in voluntary exercise models, it is important for the researcher to understand the patterns and variability of wheel running in mice, as well as the factors that can affect voluntary running activity. Overall, voluntary wheel running in mice is a very interesting approach to study the chronic adaptation to exercise, analyze the effects of exercise, and test exercise capacity in different experimental models

    Electrochemical Determination Of Antioxidant Capacity For Physical Exercise Evaluation [determinação Eletroquímica Da Capacidade Antioxidante Para Avaliação Do Exercício Físico]

    No full text
    Physical training can adapt or cause injury to skeletal muscles implicating metabolic alterations, which can be detected by biochemical analysis. Apparently the increase in the production of reactive oxygen species (ROS) is involved in both processes. Enzymatic and low molecular weight antioxidants (LMWA) minimize ROS's deleterious action through redox reactions. Cyclic voltammetry (CV) has been suggested as a tool to quantify the antioxidant capacity conferred by LMWA. The use of CV to evaluate the modulation of the antioxidant capacity conferred by LMWA in response to physical exercise is discussed here.276980985Tews, D.S., Goebel, H.H., (1998) Clin. Immunol. Immunopathol., 87, p. 240Frandsen, U., Lopez-Figueroa, M., Hellsten, Y., (1996) Biochem. Biophys. Res. Commun., 227, p. 88Reid, M.B., (1998) Acta Physiol. Scand., 162, p. 401Smolka, M.B., Zoppi, C.C., Alves, A.A., Silveira, L.R., Marangoni, S., Pereira-da-Silva, L., Novello, J.C., Macedo, D.V., (2000) Am. J. Physiol. Regul. Integr. Comp. Physiol., 279, pp. R1539Reid, M.B., Durham, W.J., (2002) Ann. N. Y. Acad. Sci., 959, p. 108Halliwell, B., Gutteridge, J.M.C., (1998) Free Radicals in Biology and Medicine, , Halliwell, B.Gutteridge, J. M. C., eds.2a ed., Oxford University Press: Oxford, cap. 3Baynes, J.W., (1991) Diabetes, 40, p. 405Alexander, R.W., (1995) Hypertension, 25, p. 155Hack, V., Breitkreutz, R., Kinscherf, R., Röhrer, H., Bartsch, P., Taut, F., Benner, A., Droge, W., (1998) Blood, 92, p. 59Ji, L.L., Dillon, D., Wu, E., (1990) Am. J. Physiol., 258, pp. R918Alessio, H.M., (1993) Med. Sci. Sports Exerc., 25, p. 218Pyne, D.B., (1994) Aust. J. Sci. Med. Sport., 26, p. 49Frankiewicz-Jozko, A., Faff, J., Sieradzan-Gabelska, B., (1996) Eur. J. Appl. Physiol. Occup. Physiol., 74, p. 470Tiidus, P.M., (1998) Can. J. Physiol. Pharmacol., 76, p. 533Chevion, S., Moran, D.S., Heled, T., Shani, Y., Regev, G., Abbou, B., Berenshtein, E., Epstein, Y., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, p. 5119Duthie, G.G., Robertson, J.D., Maughan, R.J., Morrice, P.C., (1990) Arch. Biochem. Biophys., 282, p. 78Gleeson, M., Robertson, J.D., Maughan, R.J., (1987) Clin. Sci., 73, p. 501Schippinger, G., Wonisch, W., Abuja, P.M., Fankhauser, F., Winklhofer-Roob, B.M., Halwachs, G., (2002) Eur. J. Clin. Invest., 32, p. 686Child, R.B., Wilkinson, D.M., Fallowfield, J.L., Donnelly, A.E., (1998) Med. Sci. Sports Exerc., 30, p. 1603Child, R., Brown, S., Day, S., Donnelly, A., Roper, H., Saxton, J., (1999) Clin. Sci., 96, p. 105Liu, M.L., Bergholm, R., Mäkimattila, S., Lahdenperä, S., Valkonen, M., Hilden, H., Yki-Järvinen, H., Taskinen, M., (1999) Am. J. Physiol., 276, pp. E1083Brites, F.D., Evelson, P.A., Christiansen, M.G., Nicol, M.F., Basilico, M.J., Wikinski, R.W., Llesuy, S.F., (1999) Clin. Sci., 96, p. 381Venditti, P., Di Meo, S., (1996) Arch. Biochem. Biophys., 331, p. 63Powers, S.K., Ji, L.L., Leeuwenburg, C., (1999) Med. Sci. Sports Exerc., 31, p. 987Reid, M.B., (2001) J. Appl. Physiol., 90, p. 724Ji, L.L., (1999) Exp. Biol. Med., 222, p. 283Sen, C.K., (1995) J. Appl. Physiol., 79, p. 675Antunes-Neto, J.M., (2003), Tese de Doutorado, Universidade Estadual de Campinas, BrasilEssig, D.A., Nosek, T.M., (1997) Can. J. Appl. Physiol., 22, p. 409Andrade, F.H., Reid, M.B., Allen, D.G., Westerblad, H., (1998) J. Physiol., 509, p. 565Reid, M.B., Khawli, F.A., Moody, M.R., (1993) J. Appl. Physiol., 75, p. 1081Zoppi, C.C., Antunes-Neto, J., Catanho, F.O., Goulart, L.F., Moura E Moura, N., Macedo, D.V., (2003) Rev. Paul. Educ. Fís., 17, p. 119Cao, G., Prior, R.L., (1998) Clin. Chem., 44, p. 1309Janaszewska, A., Bartosz, G., (2002) Scand. J. Clin. Lab. Invest., 62, p. 231Ghiselli, A., Serafini, M., Maiani, G., Azzini, E., Ferro-Luzzi, A., (1995) Free Radical Biol. Med., 18, p. 29Wayner, D.D., Burton, G.W., Ingold, K.U., Locke, S., (1985) FEBS Lett., 185, p. 33Metsä-Ketelä, T., (1991) Bioluminescence and Chemiluminescence Current Status, , Stanley, P.Kricka, L., eds.Wiley & Sons: ChichesterGlazer, A.N., (1988) FASEB J., 2, p. 2487Glazer, A.N., (1990) Meth. Enzymol., 186, p. 161Cao, G., Alessio, H.M., Cutler, R.G., (1993) Free Radical Biol. Med., 14, p. 303Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A., (1993) Clin. Sci., 84, p. 407Benzie, I.F.F., Strain, J.J., (1996) Anal. Biochem., 239, p. 70Mabbott, G.A., (1983) J. Chem. Educ., 60, p. 697Kissinger, P.T., Heineman, W.R., (1983) J. Chem. Educ., 60, p. 702Heineman, W.R., Kissinger, P.T., (1996) Laboratory Techniques in Electroanalytical Chemistry, , Kissinger, P. T.Heineman, W. R., eds.2a ed., Marcel Dekker, Inc.: New York, cap.3Galato, D., Ckless, K., Susin, M.F., Giacomelli, C., Ribeiro-do-Valle, R.M., Spinelli, A., (2001) Redox Rep., 6, p. 243Tan, D.X., Manchester, L.C., Burkhardt, S., Sainz, R.M., Mayo, J.C., Kohen, R., Shohami, E., Reiter, R.J., (2001) FASEB J., 15, p. 2294Chevion, S., Berry, E.M., Kitrossky, N., Kohen, R., (1997) Free Radical Biol. Med., 22, p. 411Kohen, R., Elangovan, V., Hrbac, J., Gati, I., Tirosh, O., (2000) Free Radical Biol. Med., 28, p. 871Chevion, S., Roberts, M.A., Chevion, M., (2000) Free Radical Biol. Med., 28, p. 860Kohen, R., Beit-Yannai, E., Berry, E.M., Tirosh, O., (1999) Meth. Enzymol., 300, p. 285Motchnik, P.A., Frei, B., Ames, B.N., (1994) Meth. Enzymol., 234, p. 269Chevion, S., Hofmann, M., Ziegler, R., Chevion, M., Nawroth, P.P., (1997) Biochem. Molec. Biol. Int., 41, p. 317Beit-Yannai, E., Kohen, R., Horowitz, M., Trembovler, V., Shohami, E., (1997) J. Cereb. Blood Flow Met., 17, p. 273Kissinger, P.T., Jonathan, B.H., Adams, R.N., (1973) Brain Res., 55, p. 209Kohen, R., Tirosh, O., Kopolovich, K., (1992) Exper. Geronto., 27, p. 161Kohen, R., Tirosh, O., Gorodetsky, R., (1992) Free Radical Res. Commun., 17, p. 23

    Electrocatalytic Determination Of Reduced Glutathione In Human Erythrocytes

    No full text
    The determination of reduced glutathione (GSH) in human erythrocytes using a simple, fast and sensitive method employing a glassy carbon electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) immobilized in poly(l-lysine) (PLL) film was investigated. This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of GSH, decreasing substantially the anodic overpotentials for 0.2 V versus Ag/AgCl. The modified electrode presented better performance in 0.1 mol l-1 piperazine-N,N-bis(2-ethanesulfonic acid) buffer at pH 7.4. The other experimental parameters, such as the concentration of CoTSPc and PLL in the membrane preparation, pH, type of buffer solution and applied potential, were optimized. Under optimized operational conditions, a linear response from 50 to 2,160 nmol l-1 was obtained with a high sensitivity of 1.5 nA l nmol-1 cm-2. The detection limit for GSH determination was 15 nmol l-1. The proposed sensor presented good repeatability, evaluated in terms of the relative standard deviation (1.5%) for n∈=∈10. The modified electrode was applied for determination of GSH in erythrocyte samples and the results were in agreement with those obtained by a comparative method described in the literature The average recovery for these fortified samples was 100∈±∈1)%. Applying a paired Student's-t test to compare these methods, we could observe that, at the 95% confidence level, there was no statistical difference between the reference and the proposed methods. © Springer-Verlag 2007.387518911897Chen, J., He, Z., Liu, H., Cha, C., (2006) J Electroanal Chem, 588, pp. 324-330Griffith, O.W., (1999) Free Radical Biol Med, 27, pp. 922-935Droge, D., Breitkreutz, R., (2000) Proc Nutr Soc, 59, pp. 595-600Cereser, C., Guichard, J., Drai, J., Bannier, E., Garcia, I., Boget, S., Parvaz, P., Revol, A., (2001) J Chromatogr B, 752, pp. 123-132Zhang, W., Wan, F., Zhu, W., Xu, H., Ye, X., Cheng, R., Jin, L.T., (2005) J Chromatogr B, 818, pp. 227-232Shen, Z., Wang, H., Liang, S.C., Zhang, Z.M., Zhang, H.S., (2002) Anal Lett, 35, pp. 2269-2278Chen, X.P., Cross, R.F., Clark, A.G., Baker, W.L., (1999) Mikrochim Acta, 130, pp. 225-231Besada, A., Tadros, N.B., Gawargious, Y.A., (1989) Mikrochim Acta, 3, pp. 143-146Raggi, M.A., Nobile, L., Giovannini, A.G., (1991) J Pharm Biomed Anal, 9, pp. 1037-1040Compagnone, D., Massoud, R., Di Ilio, C., Federici, G., (1991) Anal Lett, 24, pp. 993-1004Chwatko, G., Bold, E., (2000) Talanta, 52, pp. 509-515Jin, W.R., Zhan, X., Xian, L., (2000) Electroanalysis, 12, pp. 858-862Ricci, G.F., Arduini, F., Tuta, C.S., Sozzo, U., Moscone, D., Amine, A., Palleschi, G., (2006) Anal Chim Acta, 55 (8), pp. 164-170Salimi, A., Hallaj, R., (2005) Talanta, 66, pp. 967-975Compagnone, D., Federici, G., Scarciglia, L., (1993) Biosens Bioielectron, 8, pp. 257-263Compagnone, D., Federici, G., Scarciglia, L., Palleschi, G., (1994) Anal Lett, 27, pp. 15-27Zhang, S., Sun, W.L., Zhang, W., Qi, W.Y., Jin, L.T., Yamamoto, K., Tao, S., Jin, J.Y., (1999) Anal Chim Acte, 386, pp. 21-30Salimi, A., Pourbeyram, S., (2003) Talanta, 60, pp. 205-214Calvo-Marzal, P., Chumbimuni-Torres, K.Y., Hoehr, N.F., Kubota, L.T., (2006) Clin Chim Acta, 371, pp. 152-158Filanovsky, B., (1999) Anal Chim Acta, 394, pp. 91-100Guo, Y.Z., Guadalupe, A.R., (1998) Sens Actuators B, 46, pp. 213-219Stephen, A.W., Stephen, P.H., John, P.H., Brian, J.B., (1989) Analyst, 114, pp. 1563-1570Griveau, S., Gulppi, M., Pavez, J., Zagal, J.H., Bedioui, F., (2003) Electroanalysis, 15, pp. 779-785Zagal, J.H., Gulppi, M., Isaacs, M., Cardenas-Jiron, G., Aguirre, M.J., (1998) Electrochim Acta, 44, pp. 1349-1357Griveau, S., Pavez, J., Zagal, J., Bedioui, F., (2001) J Electroanal Chem, 497, pp. 75-83Gulppi, M., Griveau, S., Bedioui, F., Zagal, J., (2001) Electrochim Acta, 46, pp. 3397-3404Griveau, S., Albin, V., Pauporte, T., Zagal, J.H., Bedioui, F., (2002) J Mater Chem, 12, pp. 225-232Anson, F.C., Ohsaka, T., Saveant, J.M., (1983) J Phys Chem, 87, pp. 640-647Muthukuma, M., (2004) J Chem Phys, 120, pp. 9343-9350Weber, J.H., Busch, D.H., (1965) Inorg Chem, 4, pp. 469-471Griffith, O.W., (1980) Anal Biochem, 106, pp. 207-212Premkumar, J., Khoo, S.B., (2005) J Electroanal Chem, 576, pp. 105-111Anderson, M., (1985) Methods Enzymol, 13, pp. 548-555Limson, J., Nyokong, T., (1998) Electroanalysis, 10, pp. 988-993Zagal, J., Páez, M., Tanaka, A.A., dos Santos Jr, J.R., (1992) J Electroanal Chem, 339, pp. 13-30Lever, A.B.P., Milaeva, E.R., Speier, G., (1993) Phthalocyanine: Properties and applications, 3. , Lezniff CC, Lever ABP eds, VCH, New YorkZagal, J.H., (1992) Coord Chem Rev, 119, pp. 89-136Gulppi, M.A., Páez, M.A., Costamagna, J.A., Cárdenas-Jirón, G., Bedioui, F., Zagal, J.H., (2005) J Electroanal Chem, 580, pp. 50-56Saari, N.B., Fujita, S., Miyazoe, R., Okugawa, M., (1996) J Food Biochem, 19, pp. 321-327Fernandes, J.C.B., Kubota, L.T., Neto, G.O., (1999) Anal Chim Acta, 385, pp. 3-12Rover Jr, L., Kubota, L.T., Höehr, N.F., (2001) Clin Chim Acta, 308, pp. 55-67Sehlotho, N., Nyokong, T., Zagal, J.H., Bedioui, F., (2006) Electrochim Acta, 51, pp. 5125-5130Salimi, A., Pourbeyram, S., (2003) Talanta, 60, pp. 205-214Inoue, T., Kirchhoff, J.R., (2000) Anal Chem, 72, pp. 5755-5760(1987) Analyst, 112, pp. 199-204. , Analytical Methods CommitteeSilva, M.L.S., Garcia, M.B.Q., Lima, J.L.F.C., Barrado, E., (2006) Anal Chim Acta, 573-574, pp. 383-39

    Productive performance of simmental dairy cows supplemented with ricinoleic acid from castor oil

    No full text
    The aim of this study was to evaluate the performance and blood parameters of Simmental dairy cows, supplemented with 2 g/day of ricinoleic acid (RA) in diet. Forty Simmental dairy cows in mid lactation, individually housed in stable type tie- stall, were used. The animals were randomly assigned to two treatments: 0 or 2 g of RA/animal/ day. The experimental period consisted of 42 days divided into two 21-day. It was observed reduction in dry matter intake (DMI), increased milk, fat and FCM (fat corrected milk) yield, as well as increased of fat content of milk in cows that received RA in diets. No effects were observed for red and white blood cells and blood metabolites. Supplementation of RA improves performance of dairy cows in mid lactation.O objetivo deste estudo foi avaliar o desempenho e os parâmetros sanguíneos de vacas leiteiras simental suplementadas com 2 g/ dia de ácido ricinoleico (AR) na dieta. Foram usadas 40 vacas leiteiras da raça Simental no meio da lactação, alojados individualmente em tie-stall. Os animais foram divididos aleatoriamente em dois tratamentos: 0 ou 2 g de RA / animal / dia, fornecido via concentrados. O período experimental consistiu de 42 dias, divididos em dois períodos de 21 dias. Foi observada a redução no consumo de matéria seca (CMS), aumento da produção de leite, gordu- ra e produção corrigida 3,5 %, bem como um aumento do teor de gordura do leite em vacas que receberam AR na dietas. Nenhum efeito foi obser- vado para os glóbulos vermelhos e brancos e metabólitos no sangue. Suplementação de AR melhorou o desempenho de vacas leiteiras no terço médio de lactação

    Practical approach for the study of metabolic regulation

    No full text
    First year students in Physical Education must understand metabolic regulation to comprehend thewhole integration of biochemical pathways in attempt to establish the relation with exercise. Thiswhole view is not easy to learn and the task becomes even harder with the lack of time at theend of course, when normally the students think about metabolic integration. Trying to get thestudents attention to this important issue, we developed practical works beginning in the middle ofthe course, in parallel with theory classes. Blood and urine were collected for metabolite analysis ineach practice. The students were divided in groups (10 students) and they created the protocols in formthat they only have been guided and directed by the teacher and monitors. The practical activitiesand biochemical analysis were: six 30m sprints with dierent recovery times (blood lactate and meanvelocities), lactate removal from muscle to blood after high intensity exercise (blood lactate), anaerobicthreshold (blood lactate and heart rate), the eect of glycogen depletion after high and moderateintensity exercises (plasma glucose and urea concentrations) and low carbohydrate diet vs. normaldiet (plasma glucose and urine ketone bodies). After data collection, discussion and interpretation, thestudents presented orally each work in the same order above. Each presentation had the focus on themetabolic pathways involved in each practice. Group 1: phosphocreatine utilization and resynthesis.Group 2: anaerobic glycolysis, lactate production and removal. Group 3: transition between anaerobicglycolysis and oxidative metabolism. In attempt to promote the integration between muscle and liver-Group 4: protein catabolism after high intensity exercise with low muscular glycogen concentration(transamination, Cori Cycle and gluconeogenesis). Group 5: liver ketogenesis in low carbohydratediet. This sequence was intended to promote the comprehension of integrated metabolism. As a nalactivity, the students showed their results in the form of poster. All activities were part of disciplineevaluation. All students approved this practical approach

    USING SUCROSE FOR THE GLUCOSE TOLERANCE TEST DETERMINATION IN BIOCHEMISTRY CLASSES

    No full text
    The development of enzymatic, portable, non-expensive kits for glucose dosage allowed this test to beconducted outside the laboratory. Besides, the increasing number of diabetic patients making use ofthese kits turn their prices quite aordable, nowadays. In a previous work we have reported the use ofglucose kits inside the classroom, for the Glucose Tolerance Tests determination, in association withaerobic exercises, as a starting point to teach metabolism (Alves, A.A. et al., Annals of the XXIXSBBq Meeting, 2000). That experience has been successfully employed in the last ve years withstudents from careers such as Biology, Physical Education, Nursing and Medicine, at Unicamp. Wenow extend those observations to the use of sucrose, instead of glucose, as the sugar given in overchargeat the beginning of the experiment (1.15 and 2.3 g/kg weight for glucose and sucrose, respectively).Portable reectance meters provided accurate enzymatic measurement of glucose with a drop of blood.Since the enzyme (glucose oxydase) is specic for glucose (and not for fructose, for instance), the plotsobtained after sucrose intake are very similar to those with glucose. The advantages in using sucroseare: it is cheaper than glucose and suitable for the use outside the lab (easy to nd) and it does notinduce the characteristic unsettled stomach/nausea caused by glucose. Besides, the use of sucrosedoes not invalidate the classical use of the test, since sucrose is cleaved by invertase (giving rise toglucose and fructose) in the duodenum, where glucose units can be absorbed, giving rise the bloodprole evaluated in the tolerance test
    corecore