14 research outputs found

    Elucidation of the MicroRNA Transcriptome in Western Corn Rootworm Reveals Its Dynamic and Evolutionary Complexity

    Get PDF
    Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects

    Patterns of Gene Expression in Western Corn Rootworm (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e) Neonates, Challenged with Cry34Ab1, Cry35Ab1 and Cry34/35Ab1, Based on Next-Generation Sequencing

    Get PDF
    With Next Generation Sequencing technologies, high-throughput RNA sequencing (RNAseq) was conducted to examine gene expression in neonates of Diabrotica virgifera virgifera (LeConte) (Western Corn Rootworm, WCR) challenged with individual proteins of the binary Bacillus thuringiensis insecticidal proteins, Cry34Ab1 and Cry35Ab1, and the combination of Cry34/Cry35Ab1, which together are active against rootworm larvae. Integrated results of three different statistical comparisons identified 114 and 1300 differentially expressed transcripts (DETs) in the Cry34Ab1 and Cry34/35Ab1 treatment, respectively, as compared to the control. No DETs were identified in the Cry35Ab1 treatment. Putative Bt binding receptors previously identified in other insect species were not identified in DETs in this study. The majority of DETs (75% with Cry34Ab1 and 68.3% with Cry34/35Ab1 treatments) had no significant hits in the NCBI nr database. In addition, 92 DETs were shared between Cry34Ab1 and Cry34/35Ab1 treatments. Further analysis revealed that the most abundant DETs in both Cry34Ab1 and Cry34/35Ab1 treatments were associated with binding and catalytic activity. Results from this study confirmed the nature of these binary toxins against WCR larvae and provide a fundamental profile of expression pattern of genes in response to challenge of the Cry34/35Ab1 toxin, which may provide insight into potential resistance mechanisms

    Gene silencing in \u3ci\u3eTribolium castaneum\u3c/i\u3e as a tool for the targeted identification of candidate RNAi targets in crop pests

    Get PDF
    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests

    Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA

    Get PDF
    Background: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm ( WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. Results: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0maize events carrying rootwormSec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25in diet bioassays. Conclusion: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25, suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. Includes supplemental materials

    Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e) and Neotropical brown stink bug (\u3ci\u3eEuschistus heros\u3c/i\u3e)

    Get PDF
    RNA interference (RNAi) is a gene silencing mechanism that is present in animals and plants and is triggered by double stranded RNA (dsRNA) or small interfering RNA (siRNA), depending on the organism. In the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), RNAi can be achieved by feeding rootworms dsRNA added to artificial diet or plant tissues transformed to express dsRNA. The effect of RNAi depends on the targeted gene function and can range from an absence of phenotypic response to readily apparent responses, including lethality. Furthermore, RNAi can directly affect individuals that consume dsRNA or the effect may be transferred to the next generation. Our previous work described the potential use of genes involved in embryonic development as a parental RNAi technology for the control of WCR. In this study, we describe the use of chromatin-remodeling ATPases as target genes to achieve parental gene silencing in two insect pests, a coleopteran, WCR, and a hemipteran, the Neotropical brown stink bug, Euschistus heros Fabricius (Hemiptera: Pentatomidae). Our results show that dsRNA targeting chromatin-remodeling ATPase transcripts, brahma, mi-2, and iswi strongly reduced the fecundity of the exposed females in both insect species. Additionally, knockdown of chd1 reduced the fecundity of E. heros

    RNAi targeting of rootworm \u3ci\u3eTroponin I\u3c/i\u3e transcripts confers root protection in maize

    Get PDF
    Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize

    Parental RNA interference of genes involved in embryonic development of the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e LeConte

    Get PDF
    RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control

    Patterns of Gene Expression in Western Corn Rootworm (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e) Neonates, Challenged with Cry34Ab1, Cry35Ab1 and Cry34/35Ab1, Based on Next-Generation Sequencing

    Get PDF
    With Next Generation Sequencing technologies, high-throughput RNA sequencing (RNAseq) was conducted to examine gene expression in neonates of Diabrotica virgifera virgifera (LeConte) (Western Corn Rootworm, WCR) challenged with individual proteins of the binary Bacillus thuringiensis insecticidal proteins, Cry34Ab1 and Cry35Ab1, and the combination of Cry34/Cry35Ab1, which together are active against rootworm larvae. Integrated results of three different statistical comparisons identified 114 and 1300 differentially expressed transcripts (DETs) in the Cry34Ab1 and Cry34/35Ab1 treatment, respectively, as compared to the control. No DETs were identified in the Cry35Ab1 treatment. Putative Bt binding receptors previously identified in other insect species were not identified in DETs in this study. The majority of DETs (75% with Cry34Ab1 and 68.3% with Cry34/35Ab1 treatments) had no significant hits in the NCBI nr database. In addition, 92 DETs were shared between Cry34Ab1 and Cry34/35Ab1 treatments. Further analysis revealed that the most abundant DETs in both Cry34Ab1 and Cry34/35Ab1 treatments were associated with binding and catalytic activity. Results from this study confirmed the nature of these binary toxins against WCR larvae and provide a fundamental profile of expression pattern of genes in response to challenge of the Cry34/35Ab1 toxin, which may provide insight into potential resistance mechanisms

    Gene silencing in \u3ci\u3eTribolium castaneum\u3c/i\u3e as a tool for the targeted identification of candidate RNAi targets in crop pests

    Get PDF
    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests
    corecore