129 research outputs found

    Spectroscopic and morphological data assessing the apatite forming ability of calcium hydroxide-releasing materials for pulp capping

    Get PDF
    A pulp capping material must perform as a barrier and protect the dental pulpal complex by inducing the formation of a new dentin bridge or dentin-like tissue. Being a favorable condition for the healing process, the apatite forming ability of TheraCal (light-curable Portland-dimethacrylate cement) and Dycal (calcium hydroxide-based) pulp capping materials was studied in two simulated body fluids, i.e. Dulbecco's Phosphate Buffered Saline (DPBS) and Hank's Balanced Salt Solution (HBSS). The cements were analyzed before and after soaking in these media for different times (1\u201328 days) by ESEM-EDX, micro-Raman and IR spectroscopy. This data article refers to \u201cAn in vitro study on dentin demineralization and remineralization: collagen rearrangements and influence on the enucleated phase\u201d (Di Foggia et al., 2019)

    Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations

    Get PDF
    AIM: The chemical-physical properties of novel and long-standing calcium silicate cements versus conventional pulp capping calcium hydroxide biomaterials were compared. METHODS: Calcium hydroxide-based (Calxyl, Dycal, Life, Lime-Lite) and calcium silicate-based (ProRoot MTA, MTA Angelus, MTA Plus, Biodentine, Tech Biosealer capping, TheraCal) biomaterials were examined. Calcium and hydroxyl ion release, water sorption, interconnected open pores, apparent porosity, solubility and apatite-forming ability in simulated body fluid were evaluated. RESULTS: All calcium silicate materials released more calcium. Tech Biosealer capping, MTA Plus gel and Biodentine showed the highest values of calcium release, while Lime-Lite the lowest. All the materials showed alkalizing activity except for Life and Lime-Lite. Calcium silicate materials showed high porosity values: Tech Biosealer capping, MTA Plus gel and MTA Angelus showed the highest values of porosity, water sorption and solubility, while TheraCal the lowest. The solubility of water-containing materials was higher and correlated with the liquid-to-powder ratio. Calcium phosphate (CaP) deposits were noted on materials surfaces after short aging times. Scant deposits were detected on Lime-Lite. A CaP coating composed of spherulites was detected on all calcium silicate materials and Dycal after 28 days. The thickness, continuity and Ca/P ratio differed markedly among the materials. MTA Plus showed the thickest coating, ProRoot MTA showed large spherulitic deposits, while TheraCal presented very small dense spherulites. CONCLUSIONS: calcium silicate-based cements are biointeractive (ion-releasing) bioactive (apatite-forming) functional biomaterials. The high rate of calcium release and the fast formation of apatite may well explain the role of calcium silicate biomaterials as scaffold to induce new dentin bridge formation and clinical healing

    The use of ESEM-EDX as an innovative tool to analyze the mineral structure of peri-implant human bone

    Get PDF
    This study aimed to investigate the mineralization and chemical composition of the bone-implant interface and peri-implant tissues on human histological samples using an environmental scanning electron microscope as well as energy-dispersive x-ray spectroscopy (ESEM-EDX) as an innovative method. Eight unloaded implants with marginal bone tissue were retrieved after four months from eight patients and were histologically processed and analyzed. Histological samples were observed under optical microscopy (OM) to identify the microarchitecture of the sample and bone morphology. Then, all samples were observed under ESEM-EDX from the coronal to the most apical portion of the implant at 500x magnification. A region of interest with bone tissue of size 750 7 500 microns was selected to correspond to the first coronal and the last apical thread (ROI). EDX microanalysis was used to assess the elemental composition of the bone tissue along the thread interface and the ROI. Atomic percentages of Ca, P, N, and Ti, and the Ca/N, P/N and Ca/P ratios were measured in the ROI. Four major bone mineralization areas were identified based on the different chemical composition and ratios of the ROI. Area 1: A well-defined area with low Ca/N, P/N, and Ca/P was identified as low-density bone. Area 2: A defined area with higher Ca/N, P/N, and Ca/P, identified as new bone tissue, or bone remodeling areas. Area 3: A well-defined area with high Ca/N, /P/N, and Ca/P ratios, identified as bone tissue or bone chips. Area 4: An area with high Ca/N, P/N, and Ca/P ratios, which was identified as mature old cortical bone. Bone Area 2 was the most represented area along the bone-implant interface, while Bone Area 4 was identified only at sites approximately 1.5 mm from the interface. All areas were identified around implant biopsies, creating a mosaic-shaped distribution with well-defined borders. ESEM-EDX in combination with OM allowed to perform a microchemical analysis and offered new important information on the organic and inorganic content of the bone tissue around implants

    Mineral-doped poly(L-lactide) acid scaffolds enriched with exosomes improve osteogenic commitment of human adipose-derived mesenchymal stem cells

    Get PDF
    Exosomes derived from mesenchymal stem cells are extracellular vesicles released to facilitate cell communication and function. Recently, polylactic acid (PLA), calcium silicates (CaSi), and dicalcium phosphate dihydrate (DCPD) have been used to produce bioresorbable functional mineral-doped porous scaffolds-through thermally induced phase separation technique, as materials for bone regeneration. The aim of this study was to investigate the effect of mineral-doped PLA-based porous scaffolds enriched with exosome vesicles (EVs) on osteogenic commitment of human adipose mesenchymal stem cells (hAD-MSCs). Two different mineral-doped scaffolds were produced: PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD. Scaffolds surface micromorphology was investigated by ESEM-EDX before and after 28 days immersion in simulated body fluid (HBSS). Exosomes were deposited on the surface of the scaffolds and the effect of exosome-enriched scaffolds on osteogenic commitment of hAD-MSCs cultured in proximity of the scaffolds has been evaluated by real time PCR. In addition, the biocompatibility was evaluated by direct-contact seeding hAD-MSCs on scaffolds surface-using MTT viability test. In both formulations, ESEM showed pores similar in shape (circular and elliptic) and size (from 10\u201330 \ub5m diameter). The porosity of the scaffolds decreased after 28 days immersion in simulated body fluid. Mineral-doped scaffolds showed a dynamic surface and created a suitable bone-forming microenvironment. The presence of the mineral fillers increased the osteogenic commitment of hAD-MSCs. Exosomes were easily entrapped on the surface of the scaffolds and their presence improved gene expression of major markers of osteogenesis such as collagen type I, osteopontin, osteonectin, osteocalcin. The experimental scaffolds enriched with exosomes, in particular PLA-10CaSi-10DCPD, increased the osteogenic commitment of MSCs. In conclusion, the enrichment of bioresorbable functional scaffolds with exosomes is confirmed as a potential strategy to improve bone regeneration procedures

    Genetic screening of the inherited Ichtyosis causative mutation in Chianina cattle

    Get PDF
    Inherited Ichthyosis is a genetic disorder reported in both humans and animals, including bovines. Two inherited forms were reported in cattle and both are transmitted in an autosomal recessive manner: Ichthyosis Fetalis (IF) and Ichthyosis Congenita (IC). A causative mutation of IF in Chianina cattle was recently indentified in the ABC12 gene. This work reports the first genetic screening using this recently available genetic test on Chianina cattle. Tests were performed on both the population of farm breeding selected young bulls (131 samples randomly chosen) and high breeding value sires (16 samples). Results confirm a low total prevalence of carriers in the selected sire population (2/131; 1.5%) and the presence of the disease allele among the high value selected sires (1/16; 6.3%). This result strengthens the importance to continue the genetic screening program, particularly in performance tested bulls approved for use in AI or natural servic

    Early-onset progressive retinal atrophy associated with an IQCB1 variant in African black-footed cats (Felis nigripes)

    Get PDF
    African black-footed cats (Felis nigripes) are endangered wild felids. One male and full-sibling female African black-footed cat developed vision deficits and mydriasis as early as 3 months of age. The diagnosis of early-onset progressive retinal atrophy (PRA) was supported by reduced direct and consensual pupillary light reflexes, phenotypic presence of retinal degeneration, and a non-recordable electroretinogram with negligible amplitudes in both eyes. Whole genome sequencing, conducted on two unaffected parents and one affected offspring was compared to a variant database from 51 domestic cats and a Pallas cat, revealed 50 candidate variants that segregated concordantly with the PRA phenotype. Testing in additional affected cats confirmed that cats homozygous for a 2 base pair (bp) deletion within IQ calmodulin-binding motif-containing protein-1 (IQCB1), the gene that encodes for nephrocystin-5 (NPHP5), had vision loss. The variant segregated concordantly in other related individuals within the pedigree supporting the identification of a recessively inherited early-onset feline PRA. Analysis of the black-footed cat studbook suggests additional captive cats are at risk. Genetic testing for IQCB1 and avoidance of matings between carriers should be added to the species survival plan for captive management

    Time for a consensus conference on pain in neurorehabilitation

    Get PDF

    TOI-132 b: A short-period planet in the Neptune desert transiting a v = 11.3 G-type star

    Get PDF
    The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of ∼1400 ppm occurring every ∼2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38+0.84-0.85 ms-1, which, when combined with the stellar mass of 0.97 ± 0.06 M⊙, provides a planetary mass of 22.40+1.90-1.92 M⊕. Modelling the TESS light curve returns a planet radius of 3.42+0.13-0.14 R⊕, and therefore the planet bulk density is found to be 3.08+0.44-0.46 g cm-3. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3+1.2-2.3 per cent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert
    • …
    corecore