226 research outputs found

    Path-Length-Resolved Dynamic Light Scattering: Modeling the Transition From Single to Diffusive Scattering

    Get PDF
    Dynamic light-scattering spectroscopy is used to study Brownian motion within highly scattering samples. The fluctuations of the light field that is backscattered by a suspension of polystyrene microspheres are measured as power spectra by use of low-coherence interferometry to obtain path-length resolution. The data are modeled as the sum of contributions to the detected light weighted by a Poisson probability for the number of events that each component has experienced. By analyzing the broadening of the power spectra as a function of the path length for various sizes of particles, we determine the contribution of multiple scattering to the detected signal as a function of scattering anisotropy

    Multiple passages of light through an absorption inhomogeneity in optical imaging of turbid media

    Full text link
    The multiple passages of light through an absorption inhomogeneity of finite size deep within a turbid medium is analyzed for optical imaging using the ``self-energy'' diagram. The nonlinear correction becomes more important for an inhomogeneity of a larger size and with greater contrast in absorption with respect to the host background. The nonlinear correction factor agrees well with that from Monte Carlo simulations for CW light. The correction is about 5050%-75% in near infrared for an absorption inhomogeneity with the typical optical properties found in tissues and of size of five times the transport mean free path.Comment: 3 figure

    Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium

    Get PDF
    The mean time spent by photons inside a nonlocalized optically abnormal embedded inclusion has been derived analytically. The accuracy of the results has been tested against Monte Carlo and experimental data. We show that for quantification of the absorption coefficient of absorptive inclusions, a corrective factor that takes into account the size of the inclusion is needed. This finding suggests that perturbation methods derived for very small inclusions which are used in inverse algorithms require a corrective factor to adequately quantify the differential absorption coefficient of nonlocalized targets embedded in optically turbid media

    Skin Lesion Correspondence Localization in Total Body Photography

    Full text link
    Longitudinal tracking of skin lesions - finding correspondence, changes in morphology, and texture - is beneficial to the early detection of melanoma. However, it has not been well investigated in the context of full-body imaging. We propose a novel framework combining geometric and texture information to localize skin lesion correspondence from a source scan to a target scan in total body photography (TBP). Body landmarks or sparse correspondence are first created on the source and target 3D textured meshes. Every vertex on each of the meshes is then mapped to a feature vector characterizing the geodesic distances to the landmarks on that mesh. Then, for each lesion of interest (LOI) on the source, its corresponding location on the target is first coarsely estimated using the geometric information encoded in the feature vectors and then refined using the texture information. We evaluated the framework quantitatively on both a public and a private dataset, for which our success rates (at 10 mm criterion) are comparable to the only reported longitudinal study. As full-body 3D capture becomes more prevalent and has higher quality, we expect the proposed method to constitute a valuable step in the longitudinal tracking of skin lesions.Comment: MICCAI-202

    Synchronous vs. asynchronous dynamics of diffusion-controlled reactions

    Full text link
    An analytical method based on the classical ruin problem is developed to compute the mean reaction time between two walkers undergoing a generalized random walk on a 1d lattice. At each time step, either both walkers diffuse simultaneously with probability pp (synchronous event) or one of them diffuses while the other remains immobile with complementary probability (asynchronous event). Reaction takes place through same site occupation or position exchange. We study the influence of the degree of synchronicity pp of the walkers and the lattice size NN on the global reaction's efficiency. For odd NN, the purely synchronous case (p=1p=1) is always the most effective one, while for even NN, the encounter time is minimized by a combination of synchronous and asynchronous events. This new parity effect is fully confirmed by Monte Carlo simulations on 1d lattices as well as for 2d and 3d lattices. In contrast, the 1d continuum approximation valid for sufficiently large lattices predicts a monotonic increase of the efficiency as a function of pp. The relevance of the model for several research areas is briefly discussed.Comment: 21 pages (including 12 figures and 4 tables), uses revtex4.cls, accepted for publication in Physica

    A continuous time random walk model for financial distributions

    Get PDF
    We apply the formalism of the continuous time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the US dollar/Deutsche Mark future exchange, finding good agreement between theory and the observed data.Comment: 14 pages, 5 figures, revtex4, submitted for publicatio

    The use of functional near-infrared spectroscopy in tracking neurodevelopmental trajectories in infants and children with or without developmental disorders: a systematic review

    Get PDF
    Understanding the neurodevelopmental trajectories of infants and children is essential for the early identification of neurodevelopmental disorders, elucidating the neural mechanisms underlying the disorders, and predicting developmental outcomes. Functional Near-Infrared Spectroscopy (fNIRS) is an infant-friendly neuroimaging tool that enables the monitoring of cerebral hemodynamic responses from the neonatal period. Due to its advantages, fNIRS is a promising tool for studying neurodevelopmental trajectories. Although many researchers have used fNIRS to study neural development in infants/children and have reported important findings, there is a lack of synthesized evidence for using fNIRS to track neurodevelopmental trajectories in infants and children. The current systematic review summarized 84 original fNIRS studies and showed a general trend of age-related increase in network integration and segregation, interhemispheric connectivity, leftward asymmetry, and differences in phase oscillation during resting-state. Moreover, typically developing infants and children showed a developmental trend of more localized and differentiated activation when processing visual, auditory, and tactile information, suggesting more mature and specialized sensory networks. Later in life, children switched from recruiting bilateral auditory to a left-lateralized language circuit when processing social auditory and language information and showed increased prefrontal activation during executive functioning tasks. The developmental trajectories are different in children with developmental disorders, with infants at risk for autism spectrum disorder showing initial overconnectivity followed by underconnectivity during resting-state; and children with attention-deficit/hyperactivity disorders showing lower prefrontal cortex activation during executive functioning tasks compared to their typically developing peers throughout childhood. The current systematic review supports the use of fNIRS in tracking the neurodevelopmental trajectories in children. More longitudinal studies are needed to validate the neurodevelopmental trajectories and explore the use of these neurobiomarkers for the early identification of developmental disorders and in tracking the effects of interventions
    • …
    corecore