10 research outputs found

    Optimization of laser-firing processes for silicon-heterojunction solar-cell back contacts

    Get PDF
    One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization

    Optimization of laser-firing processes for silicon-heterojunction solar-cell back contacts

    Get PDF
    One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization

    Experimental and numerical study of cw green laser crystallization of a-Si:H thin films

    Full text link
    Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope)

    Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering

    No full text
    Thin films of hafnium oxide have been grown by high pressure reactive sputtering on transparent quartz substrates UV grade silica and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range UV VIS NIR . A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants refractive index and absorption coefficient . Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy ion elastic recoil detection analysis ERDA . The absorption coefficient gave an excellent fit to the Tauc law indirect gap , which allowed to obtain a band gap value of 5.54 eV. The structure of the films amorphous or polycrystalline was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot the Tauc parameter is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i.e., more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundarie

    Normative data of a smartphone app-based 6-minute walking test, test-retest reliability, and content validity with patient-reported outcome measures

    No full text
    OBJECTIVE The 6-minute walking test (6WT) is used to determine restrictions in a subject's 6-minute walking distance (6WD) due to lumbar degenerative disc disease. To facilitate simple and convenient patient self-measurement, a free and reliable smartphone app using Global Positioning System coordinates was previously designed. The authors aimed to determine normative values for app-based 6WD measurements.METHODS The maximum 6WD was determined three times using app-based measurement in a sample of 330 volunteers without previous spine surgery or current spine-related disability, recruited at 8 centers in 5 countries (mean subject age 44.2 years, range 16-91 years; 48.5% male; mean BMI 24.6 kg/m(2), range 16.3-40.2 kg/m(2); 67.9% working; 14.2% smokers). Subjects provided basic demographic information, including comorbidities and patient-reported outcome measures (PROMs): visual analog scale (VAS) for both low-back and lower-extremity pain, Core Outcome Measures Index (COMI), Zurich Claudication Questionnaire (ZCQ), and subjective walking distance and duration. The authors determined the test-retest reliability across three measurements (intraclass correlation coefficient [ICC], standard error of measurement [SEM], and mean 6WD [95% CI]) stratified for age and sex, and content validity (linear regression coefficients) between 6WD and PROMs.RESULTS The ICC for repeated app-based 6WD measurements was 0.89 (95% CI 0.87-0.91, p < 0.001) and the SEM was 34 meters. The overall mean 6WD was 585.9 meters (95% CI 574.7-597.0 meters), with significant differences across age categories (p < 0.001). The 6WD was on average about 32 meters less in females (570.5 vs 602.2 meters, p = 0.005). There were linear correlations between average 6WD and VAS back pain, VAS leg pain, COMI Back and COMI subscores of pain intensity and disability, ZCQ symptom severity, ZCQ physical function, and ZCQ pain and neuroischemic symptoms subscores, as well as with subjective walking distance and duration, indicating that subjects with higher pain, higher disability, and lower subjective walking capacity had significantly lower 6WD (all p < 0.001).CONCLUSIONS This study provides normative data for app-based 6WD measurements in a multicenter sample from 8 institutions and 5 countries. These values can now be used as reference to compare 6WT results and quantify objective functional impairment in patients with degenerative diseases of the spine using z-scores. The authors found a good to excellent test-retest reliability of the 6WT app, a low area of uncertainty, and high content validity of the average 6WD with commonly used PROMs.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Cola Beverages: Clinical Uses versus Adverse Effects

    No full text
    corecore