7 research outputs found

    DONNAv2 -- Lightweight Neural Architecture Search for Vision tasks

    Full text link
    With the growing demand for vision applications and deployment across edge devices, the development of hardware-friendly architectures that maintain performance during device deployment becomes crucial. Neural architecture search (NAS) techniques explore various approaches to discover efficient architectures for diverse learning tasks in a computationally efficient manner. In this paper, we present the next-generation neural architecture design for computationally efficient neural architecture distillation - DONNAv2 . Conventional NAS algorithms rely on a computationally extensive stage where an accuracy predictor is learned to estimate model performance within search space. This building of accuracy predictors helps them predict the performance of models that are not being finetuned. Here, we have developed an elegant approach to eliminate building the accuracy predictor and extend DONNA to a computationally efficient setting. The loss metric of individual blocks forming the network serves as the surrogate performance measure for the sampled models in the NAS search stage. To validate the performance of DONNAv2 we have performed extensive experiments involving a range of diverse vision tasks including classification, object detection, image denoising, super-resolution, and panoptic perception network (YOLOP). The hardware-in-the-loop experiments were carried out using the Samsung Galaxy S10 mobile platform. Notably, DONNAv2 reduces the computational cost of DONNA by 10x for the larger datasets. Furthermore, to improve the quality of NAS search space, DONNAv2 leverages a block knowledge distillation filter to remove blocks with high inference costs.Comment: Accepted at ICCV-Workshop on Resource-Efficient Deep Learning, 202

    Quantification of Visceral Fat at the L5 Vertebral Body Level in Patients with Crohn’s Disease Using T2-Weighted MRI

    Get PDF
    The umbilical or L3 vertebral body level is often used for body fat quantification using computed tomography. To explore the feasibility of using clinically acquired pelvic magnetic resonance imaging (MRI) for visceral fat measurement, we examined the correlation of visceral fat parameters at the umbilical and L5 vertebral body levels. We retrospectively analyzed T2-weighted half-Fourier acquisition single-shot turbo spin echo (HASTE) MR axial images from Crohn’s disease patients who underwent MRI enterography of the abdomen and pelvis over a three-year period. We determined the area/volume of subcutaneous and visceral fat from the umbilical and L5 levels and calculated the visceral fat ratio (VFR = visceral fat/subcutaneous fat) and visceral fat index (VFI = visceral fat/total fat). Statistical analyses involved correlation analysis between both levels, inter-rater analysis between two investigators, and inter-platform analysis between two image-analysis platforms. Correlational analysis of 32 patients yielded significant associations for VFI (r = 0.85; p p < 0.0001). Intraclass coefficients for VFI and VFR were 0.846 and 0.875 (good agreement) between investigators and 0.831 and 0.728 (good and moderate agreement) between platforms. Our study suggests that the L5 level on clinically acquired pelvic MRIs may serve as a reference point for visceral fat quantification
    corecore