1,163 research outputs found

    The sensitivity and specificity of one field non-mydriatic digital fundus photography for DR screening

    Get PDF
    AIM:To evaluate the sensitivity and specificity of one-field non-mydriatic digital fundus photography and direct ophthalmoscopy for diabetic retinopathy(DR)screening, compared with fundus fluorescein angiography( FFA ).<p>METHODS:All 93 patients of type 1 or 2 diabetic who have underwent one-field non-mydriatic digital fundus photography, and direct ophthalmoscopy with dilation of their pupils, and FFA by ophthalmologists. The sensitivity and specificity of one-field non-mydriatic digital fundus photography and direct ophthalmoscopy were calculated respectively, compared with FFA.<p>RESULTS: The sensitivity and specificity of one-field non-mydriatic digital fundus photography for detection of any DR were 80.4% and 94.7%; The sensitivity and specificity of direct ophthalmoscopy for detection of any DR were 64.2% and 84.2%; After the standard for referable DR being lowered down to the moderate non-proliferative diabetic retinopathy(M-NPDR), the sensitivity and specificity of non-mydriatic digital fundus photography for detection were 88.9% and 98.4%, the sensitivity and specificity of direct ophthalmoscopy for detection were 71.5% and 96.7%.<p>CONCLUSION: One-field non-mydriatic digital fundus photography is an effective method for DR screening

    Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil

    Get PDF
    Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually 13C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota
    corecore