491 research outputs found

    Une solution semi-analytique améliorée pour le stress aux encoches arrondies

    Get PDF
    International audienceIn order to investigate the brittle failure of keyhole notched components, the stress distribution at notch tips is studied numerically and theoretically. A semi-analytical formula is developed for the maximum notch-tip-stress, incorporating crack-tip-blunting, stress-concentration and stress-equilibrium. Stress distributions in notched plates are simulated by the finite-element method, showing improved accuracy of the formula relative to established solutions. Application of the developed equation to components containing U-notches and blunt V-notches, is explored, demonstrating its broad applicability. When combined with stress-based failure criteria, the semi-analytical model can be employed to assess brittle failure in notched components with significance toward fracture in heterogeneous materials.Afin d’étudier la défaillance fragile des composants à encoche en trou de serrure, la répartition des contraintes aux extrémités des entailles est étudiée numériquement et théoriquement. Une formule semi-analytique est élaborée pour la contrainte maximale en pointe, intégrant l’atténuation des fissures, la concentration en contrainte et l’équilibre en contrainte. Les distributions de contraintes dans les plaques à encoches sont simulées par la méthode des éléments finis, ce qui montre une précision améliorée de la formule par rapport aux solutions établies. L’application de l’équation développée aux composants contenant des encoches en U et des encoches en V contondantes est explorée, démontrant ainsi sa large applicabilité. Lorsqu'il est combiné à des critères de rupture fondés sur des contraintes, le modèle semi-analytique peut être utilisé pour évaluer la défaillance fragile de composants entaillés présentant une importance significative pour la rupture dans des matériaux hétérogènes

    Novel fusion computing method for bio-medical image of WSN based on spherical coordinate

    Get PDF
    In bio-medical field, embedded numerous sensing nodes can be used to monitor and interact with physical world based on signal analysis and processing. Data from many different sources can be collected into massive data sets via localized sensor networks. Understanding the environment requires collecting and analyzing data from thousands of sensors monitoring, this is big data environment. The application of bio-medical image fusion for big-data computing has strong development momentum, big-data bio-medical image fusion is one of key problems, so the fusion method study is a hot topic in the field of signal analysis and processing. The existing methods have many limitations, such as large delay, data redundancy, more energy cost, low quality, so novel fusion computing method based on spherical coordinate for big-data bio-medical image of WSN is proposed in this paper. In this method, the three high-frequency coefficients in wavelet domain of bio-medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data bio-medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on multi-scale edge of bio-medical image, it can be fused and reconstructed. Experimental results indicate the novel method is effective and very useful for transmission of big-data bio-medical image, which can solve the problem of data redundancy, more energy cost and low quality

    The sensitivity and specificity of one field non-mydriatic digital fundus photography for DR screening

    Get PDF
    AIM:To evaluate the sensitivity and specificity of one-field non-mydriatic digital fundus photography and direct ophthalmoscopy for diabetic retinopathy(DR)screening, compared with fundus fluorescein angiography( FFA ).<p>METHODS:All 93 patients of type 1 or 2 diabetic who have underwent one-field non-mydriatic digital fundus photography, and direct ophthalmoscopy with dilation of their pupils, and FFA by ophthalmologists. The sensitivity and specificity of one-field non-mydriatic digital fundus photography and direct ophthalmoscopy were calculated respectively, compared with FFA.<p>RESULTS: The sensitivity and specificity of one-field non-mydriatic digital fundus photography for detection of any DR were 80.4% and 94.7%; The sensitivity and specificity of direct ophthalmoscopy for detection of any DR were 64.2% and 84.2%; After the standard for referable DR being lowered down to the moderate non-proliferative diabetic retinopathy(M-NPDR), the sensitivity and specificity of non-mydriatic digital fundus photography for detection were 88.9% and 98.4%, the sensitivity and specificity of direct ophthalmoscopy for detection were 71.5% and 96.7%.<p>CONCLUSION: One-field non-mydriatic digital fundus photography is an effective method for DR screening

    Novel fusion computing method for bio-medical image of WSN based on spherical coordinate

    Get PDF
    In bio-medical field, embedded numerous sensing nodes can be used to monitor and interact with physical world based on signal analysis and processing. Data from many different sources can be collected into massive data sets via localized sensor networks. Understanding the environment requires collecting and analyzing data from thousands of sensors monitoring, this is big data environment. The application of bio-medical image fusion for big-data computing has strong development momentum, big-data bio-medical image fusion is one of key problems, so the fusion method study is a hot topic in the field of signal analysis and processing. The existing methods have many limitations, such as large delay, data redundancy, more energy cost, low quality, so novel fusion computing method based on spherical coordinate for big-data bio-medical image of WSN is proposed in this paper. In this method, the three high-frequency coefficients in wavelet domain of bio-medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data bio-medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on multi-scale edge of bio-medical image, it can be fused and reconstructed. Experimental results indicate the novel method is effective and very useful for transmission of big-data bio-medical image, which can solve the problem of data redundancy, more energy cost and low quality

    Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology

    Get PDF
    Mulberry is one of the most widely used traditional Chinese medicines. Anthocyanins are the main bioactive components of mulberry, and possess important biological activities, such as antimicrobial, anti-inflammatory and antioxidant activities. This study investigated the ultrasound-assisted extraction (UAE) of anthocyanins from mulberry by using response surface methodology (RSM). The extraction conditions associated with anthocyanin yield, including extraction solvent, liquid-to-solid rate, temperature and extraction time, are discussed. The optimal conditions obtained by RSM for UAE from mulberry include 63.8% methanol contains 1% (v/v) trifluoroacetic acid (TFA), 43.2 °C temperature, 23.8 (v/w) liquid-to-solid ratio, and 40 min time for the maximum yield (64.70 ± 0.45 mg/g). The results indicated that the UAE can be an effective method for the extraction of some active components from plant materials

    pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner

    Get PDF
    Activation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity. We found that Akt was prolyl-hydroxylated by the oxygen-dependent hydroxylase EglN1. The von Hippel–Lindau protein (pVHL) bound directly to hydroxylated Akt and inhibited Akt activity. In cells lacking oxygen or functional pVHL, Akt was activated to promote cell survival and tumorigenesis. We also identified cancer-associated Akt mutations that impair Akt hydroxylation and subsequent recognition by pVHL, thus leading to Akt hyperactivation. Our results show that microenvironmental changes, such as hypoxia, can affect tumor behaviors by altering Akt activation, which has a critical role in tumor growth and therapeutic resistance
    • …
    corecore