45 research outputs found

    Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2

    Get PDF
    Enhanced BMP or canonical Wnt (cWnt) signaling are therapeutic strategies employed to enhance bone formation and fracture repair, but the mechanisms each pathway utilizes to specify cell fate of bone-forming osteoblasts remain poorly understood. Among all BMPs expressed in bone, we find that singular deficiency of Bmp2 blocks the ability of cWnt signaling to specify osteoblasts from limb bud or bone marrow progenitors. When exposed to cWnts, Bmp2-deficient cells fail to progress through the Runx2/Osx1 checkpoint and thus do not upregulate multiple genes controlling mineral metabolism in osteoblasts. Cells lacking Bmp2 after induction of Osx1 differentiate normally in response to cWnts, suggesting that pre-Osx1(+) osteoprogenitors are an essential source and a target of BMP2. Our analysis furthermore reveals Grainyhead-like 3 (Grhl3) as a transcription factor in the osteoblast gene regulatory network induced during bone development and bone repair, which acts upstream of Osx1 in a BMP2-dependent manner. The Runx2/Osx1 transition therefore receives crucial regulatory inputs from BMP2 that are not compensated for by cWnt signaling, and this is mediated at least in part by induction and activation of Grhl3.National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH-NIAMS)Harvard Sch Dent Med, Dept Dev Biol, 188 Longwood Ave, Boston, MA 02115 USASaitama Med Univ, Res Ctr Genom Med, Div Pathophysiol, 1397-1 Yamane, Hidaka, Saitama 3501241, JapanUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Rua Talim 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniversidade Federal de São Paulo, Rua Talim, 330, São José dos Campos, São Paulo, CEP 12231-280, BrazilNIH-NIAMS: R01 AR055904Web of Scienc

    BMPR-II is Dispensable for Formation of the Limb Skeleton.

    Get PDF
    Initiation of BMP signaling is dependent upon activation of Type I BMP receptor by constitutively active Type II BMP receptor. Three Type II BMP receptors have been identified; Acvr2a and Acvr2b serve as receptors for BMPs and for activin-like ligands whereas BMPR-II functions only as a BMP receptor. As BMP signaling is required for endochondral ossification and loss of either Acvr2a or Acvr2b is not associated with deficits in limb development, we hypothesized that BMPR-II would be essential for BMP signaling during skeletogenesis. We removed BMPR-II from early limb mesoderm by crossing BMPR-II floxed mice with those carrying the Prx1-Cre transgene. Mice lacking limb expression of BMPR-II have normal skeletons that could not be distinguished from control littermates. From these data, we conclude that BMPR-II is not required for endochondral ossification in the limb where loss of BMPR-II may be compensated by BMP utilization of Acvr2a and Acvr2b

    BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells Via Interaction With Acvr2b.

    Get PDF
    Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair. However, the role of BMP in the maintenance of adult bone mass is not well understood. Targeted disruption of BMP3 in mice results in increased trabecular bone formation, whereas transgenic overexpression of BMP3 in skeletal cells leads to spontaneous fracture, consistent with BMP3 having a negative role in bone mass regulation. Here we investigate the importance of BMP3 as a mediator of BMP signaling in the adult skeleton. We find that osteoblasts (OBL) and osteocytes are the source of BMP3 in adult bone. Using in vitro cultures of primary bone marrow stromal cells, we show that overexpression of BMP3 suppresses OBL differentiation, whereas loss of BMP3 increases colony-forming unit fibroblasts and colony-forming unit OBL. The ability of BMP3 to affect OBL differentiation is due to its interaction with activin receptor type 2b (Acvr2b) because knockdown of endogenous Acvr2b in bone marrow stromal cells reduces the suppressive effect of BMP3 on OBL differentiation. These findings best fit a model in which BMP3, produced by mature bone cells, acts to reduce BMP signaling through Acvr2b in skeletal progenitor cells, limiting their differentiation to mature OBL. Our data further support the idea that endogenous BMPs have a physiological role in regulating adult bone mass

    Loss of BMPR2 Leads to High Bone Mass Due to Increased Osteoblast Activity

    Get PDF
    Imbalances in the ratio of bone morphogenetic protein (BMP) versus activin and TGFβ signaling are increasingly associated with human diseases yet the mechanisms mediating this relationship remain unclear. The type 2 receptors ACVR2A and ACVR2B bind BMPs and activins but the type 2 receptor BMPR2 only binds BMPs, suggesting that type 2 receptor utilization might play a role in mediating the interaction of these pathways. We tested this hypothesis in the mouse skeleton, where bone mass is reciprocally regulated by BMP signaling and activin and TGFβ signaling. We found that deleting Bmpr2 in mouse skeletal progenitor cells (Bmpr2-cKO mice) selectively impaired activin signaling but had no effect on BMP signaling, resulting in an increased bone formation rate and high bone mass. Additionally, activin sequestration had no effect on bone mass in Bmpr2-cKO mice but increased bone mass in wild-type mice. Our findings suggest a novel model whereby BMPR2 availability alleviates receptor-level competition between BMPs and activins and where utilization of ACVR2A and ACVR2B by BMPs comes at the expense of activins. As BMP and activin pathway modulation are of current therapeutic interest, our findings provide important mechanistic insight into the relationship between these pathways in human health

    Hepatocyte Nuclear Factor 3beta is Involved in Pancreatic Beta-Cell-Specific Transcription of the PDX-1 Gene

    Get PDF
    The mammalian homeobox gene pdx-1 is expressed in pluripotent precursor cells in the dorsal and ventral pancreatic bud and duodenal endoderm, which will produce the pancreas and the rostral duodenum. In the adult, pdx-1 is expressed principally within insulin-secreting pancreatic islet b cells and cells of the duodenal epithelium. Our objective in this study was to localize sequences within the mouse pdx-1 gene mediating selective expression within the islet. Studies of transgenic mice in which a genomic fragment of the mouse pdx-1 gene from kb 24.5 to 18.2 was used to drive a b-galactosidase reporter showed that the control sequences sufficient for appropriate developmental and adult specific expression were contained within this region. Three nuclease-hypersensitive sites, located between bp 22560 and 21880 (site 1), bp 21330 and 2800 (site 2), and bp 2260 and 1180 (site 3), were identified within the 5*-flanking region of the endogenous pdx-1 gene. Pancreatic b-cell-specific expression was shown to be controlled by sequences within site 1 from an analysis of the expression pattern of various pdx-1–herpes simplex virus thymidine kinase promoter expression constructs in transfected b-cell and non-b-cell lines. Furthermore, we also established that this region was important in vivo by demonstrating that expression from a site 1-driven b-galactosidase reporter construct was directed to islet b-cells in transgenic mice. The activity of the site 1-driven constructs was reduced substantially in b-cell lines by mutating a hepatocyte nuclear factor 3 (HNF3)-like site located between nucleotides 22007 and 21996. Gel shift analysis indicated that HNF3b present in islet b cells binds to this element. Immunohistochemical studies revealed that HNF3b was present within the nuclei of almost all islet b cells and subsets of pancreatic acinar cells. Together, these results suggest that HNF3b, a key regulator of endodermal cell lineage development, plays an essential role in the cell-type-specific transcription of the pdx-1 gene in the pancreas

    A periosteum-derived cell line to study the role of BMP/TGFβ signaling in periosteal cell behavior and function

    Get PDF
    The periosteum is a thin tissue surrounding each skeletal element that contains stem and progenitor cells involved in bone development, postnatal appositional bone growth, load-induced bone formation, and fracture repair. BMP and TGFβ signaling are important for periosteal activity and periosteal cell behavior, but thorough examination of the influence of these pathways on specific cell populations resident in the periosteum is lacking due to limitations associated with primary periosteal cell isolations and in vitro experiments. Here we describe the generation of a novel periosteum-derived clonal cell (PDC) line from postnatal day 14 mice and use it to examine periosteal cell behavior in vitro. PDCs exhibit key characteristics of periosteal cells observed during skeletal development, maintenance, and bone repair. Specifically, PDCs express established periosteal markers, can be expanded in culture, demonstrate the ability to differentiate into chondrocytes, osteoblasts, and adipocytes, and exhibit an osteogenic response to physical stimulation. PDCs also engage in BMP and/or TGFβ signaling when treated with the activating ligands BMP2 and TGFβ-1, and in response to mechanical stimulation via fluid shear. We believe that this PDC line will be useful for large-scale, long-term experiments that were not feasible when using primary periosteal cells. Anticipated future uses include advancing our understanding of the signaling interactions that occur during appositional bone growth and fracture repair and developing drug screening platforms to discover novel growth and fracture healing factors

    Regulatory Regions Driving Developmental and Tissue-Specific Expression of the Essential Pancreatic Gene pdx1

    Get PDF
    Abstractpdx1 (pancreatic and duodenal homeobox gene-1), which is expressed broadly in the embryonic pancreas and, later, in a more restricted manner in the mature β cells in the islets of Langerhans, is essential both for organ formation and β cell gene expression and function. We carried out a transgenic reporter gene analysis to identify region- and cell type-specific regulatory regions in pdx1. A 14.5-kb pdx1 genomic fragment corrected the glucose intolerance of pdx1+/− animals but, moreover, fully rescued the severe gut and pancreas defects in pdx1−/− embryos. Sequences sufficient to direct reporter expression to the entire endogenous pdx1 expression domain lie within 4.3 kb of 5′ flanking DNA. In this region, we identified two distinct fragments that drive reporter gene expression to different sets of islet neuroendocrine cells. One shows pan-endocrine cell specificity, the other is selectively activated in insulin-producing β cells. The endocrine-specific regulatory regions overlap a localized region of 5′ flanking DNA that is remarkably conserved in sequence between vertebrate pdx1 genes, and which has been associated with β cell-selective expression in cultured cell lines. This region contains potential binding sites for several transcription factors implicated in endodermal development and the pathogenesis of some forms of type-2 diabetes. These results are consistent with our previous proposal that conserved upstream pdx1 sequences exert control over pdx1 during embryonic organogenesis and islet endocrine cell differentiation. We propose that mutations affecting the expression and/or activity of transcription factors operating via these sequences may predispose towards diabetes, at least in part by direct effects on endocrine pdx1 expression
    corecore