134 research outputs found

    Evaluation of Aglianico grape skin and seed polyphenols astringency by SDS-PAGE electrophoresis of salivary proteins after the binding reaction

    Get PDF
    SDS–PAGE electrophoresis and densitometry analysis were carried out to evaluate the reactivity of Aglianico red grape skin and seed polyphenols with human salivary proteins in order to find a method able to assess their astringency. Analysis of the supernatant obtained after a tannin/human salivary protein binding assay and sensorial analysis showed that four proteins, lactoferrin, PRPbg1, PRPbg2 and a-amylase, were the proteins best able to distinguish tannin solutions characterised by different levels of astringency. A correlation between densitometric data and tannin concentration was plotted in order to give an indirect measure of astringency. The two sources of Aglianico grape polyphenols differed from each other in astringency power; the seed extract solution was about two-fold more tannic than the skin one. The difference in astringency was also perceived by sensorial analysis. The results from this study show that SDS–PAGE electrophoresis of human salivary proteins after the binding reaction with grape polyphenol extracts, coupled with densitometric analysis and the use of a calibration curve, looks extremely promising as a new approach to evaluate polyphenol astringency

    Free and glycoconjugated volatiles of V. vinifera grape 'Falanghina'

    Get PDF
    The potential aroma of Vitis vinifera Falanghina was investigated by means of qualitative and semiquantitative determinations of volatile free and glycosidically bound secondary metabolites. Glycosilated geranic acid, α-terpineol, eugenol and 2-exo-hydroxy-1,8-cineole play a central role in characterizing the potential aromatic expression of this cultivar. In particular glycosilated 2-exo-hydroxy-1,8-cineole found in Falanghina must may be discriminant and hypothetically contributes to identify Falanghina wine origin and affiliation because of its high chemical and biological stability.

    trans-Resveratrol, Quercetin, (+)-Catechin, and (-)-Epicatechin Content in South Italian Monovarietal Wines: Relantionship with Maceration Time and Marc Pressing during Winemaking

    No full text
    The concentrations of trans-resveratrol, (+)-catechin, (-)-epicatechin, and quercetin were evaluated by means of high-performance liquid chromatography-diode array detection in red wines obtained from Aglianico, Piedirosso, and Nerello Mascalese grapes. The trans-resveratrol and epicatechin concentrations did not differ significantly between experimental wines. The concentration of quercetin in Nerello Mascalese wines was more than twice that observed in Aglianico and Piedirosso wines. Nerello Mascalese wines also significantly differed from other wines in the (+)-catechin content, which was significantly higher than those found in the other two wines. During maceration, the maximum extraction of trans-resveratrol was reached after 12 days for Aglianico and Piedirosso, after which a decline was observed. On the contrary, in the case of Nerello Mascalese, the concentration of trans-resveratrol increased steadily throughout the whole maceration process. After 2 days of maceration, the maximum concentration of quercetin was observed in Aglianico must, whereas the maximum quercetin extraction was reached after 12 days for Piedirosso and 17 days for Nerello Mascalese. The maximum levels of (+)-catechin and (-)-epicatechin were generally observed after 12 days of maceration for all wines, although a decline of (-)-epicatechin occurred after maximum extraction in Aglianico and Piedirosso wines. Following marc pressing, a significant increase in the concentration of trans-resveratrol for Aglianico, (+)-catechin and (-)-epicatechin for Piedirosso, and (-)-epicatechin for Nerello Mascalese was observed

    Extraction of phenolic compounds from 'Aglianico' and 'Uva di Troia' grape skins and seeds in model solutions: Influence of ethanol and maceration time

    Get PDF
    The effect of increasing concentration of ethanol (0, 4, 7.5 and 13 %) and contact time (respectively 1, 4, 7 and 10 days) on the extraction of phenolics from berry skins and seeds of the grape, Vitis vinifera 'Aglianico' and 'Uva di Troia', were examined. Two assays of post-fermentative maceration in two hydroalcoholic solutions at 11 and 13 % ethanol, were also performed. Chromatic properties and phenolics of medium were analyzed by HPLC and spectrophotometric methods. The extraction of total phenolics, anthocyanins, proanthocyanidins, and vanilline reactive flavans (VRF) from berry skins reached the maximum on the 4th day of maceration. Quercetin and gallic acid were gradually extracted from grape skins. The maximum release of flavan-3-ols from the skins was achieved on the first day of maceration. Total phenolics, tannins and VRF were gradually extracted from seeds. During the postfermentative maceration, higher the content of ethanol, higher the extraction of total polyphenols and tannins from 'Uva di Troia' skins and the extraction of total polyphenols and tannins from 'Aglianico' seeds. These results clearly indicate that the grape cultivar mainly influences the release of phenolic compounds from the solid parts of berry to the must especially during postfermentative maceration.

    Modification of the organic acid profile of grapes due to climate changes alters the stability of red wine phenolics during controlled oxidation

    Get PDF
    The effect of the main grape organic acids (tartaric, malic and citric) on the degradative oxidation of red wine was investigated by NMR, HPLC and spectrophotometry. Wines featuring the same pH value of 3.2 with different combinations of organic acids were prepared. Results showed that tartaric acid preserved native anthocyanins from oxidative degradation more than malic and citric acids, with malic acid being the one favoring oxidations the most and, consequently, acetaldehyde production. Wines richer in malic acids showed the highest reactivity towards saliva proteins and a potential higher astringency. Given the wide changes in tartaric/malic acid ratio with climate, these results can help to act in vineyard, as well as in winery, to manage the malic/tartaric acid ratio with the aim of improving red wine longevity

    Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania Region

    Get PDF
    Campania region has always been considered one of the most appreciated Italian districts for wine production. Wine distinctiveness arises from their native grapevines. To better define the chemical profile of Campania autochthonous red grape varieties, we analysed the phenolic composition of Aglianico di Taurasi, Aglianico del Vulture, Aglianico del Taburno, Piedirosso wines, and a minor native variety, Lingua di Femmina in comparison with Merlot and Cabernet Sauvignon, as reference cultivars. A genetic profiling was also carried out using microsatellite molecular markers with high polymorphic and unambiguous profiles. Principal component analysis applied to 72 wines based on the 18 biochemical parameters, explained 77.6% of the total variance and highlighted important biological entities providing insightful patterns. Moreover, comparison of SSR-based data with phenylpropanoid molecules exhibited a statistically significant correlation. Our approach might be reasonably adopted for future characterisations and traceability of grapevines and corresponding wines

    Influence of berry ripening stages over phenolics and volatile compounds in aged aglianicowine

    Get PDF
    The harvest time of grapes is a major determinant of berry composition and of the wine quality, and it is usually established through empirical testing of main biochemical parameters of the berry. In this work, we studied how the ripening stage of Aglianico grapes modulates key secondary metabolites of wines, phenolics and volatile compounds. Specifically, we analyzed and compared four berry ripening stages corresponding to total soluble solids of 18, 20, 22, and 25 Brix and related aged wines. Wine color intensity, anthocyanins level and total trans-resveratrol (free + glycosidic form) increased with grape maturity degree. Wines obtained from late-harvested grapes significantly differed from the others for a higher content of aliphatic alcohols, esters, acetates, a-terpineol and benzyl alcohol. The content of glycosidic terpene compounds, such as nerol, geraniol and a-terpineol, was higher in wines obtained with grapes harvested at 25 Brix compared to the earlier harvests. Our work indicated that the maturity of the grape is a determining factor in phenolic and volatile compounds of red Aglianico wines. Moreover, extending grape ripening to a sugar concentration higher than 22 Brix improves the biochemical profile of aged wine in terms of aroma compounds and of phytochemicals with known health-related benefits

    Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine

    Get PDF
    Abstract. This paper aims to test a new physically oriented approach to viticulture zoning at farm scale that is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirements and wine production. The physics of our approach are defined by the use of soil–plant–atmosphere simulation models, applying physically based equations to describe the soil hydrological processes and solve soil–plant water status. This study (part of the ZOVISA project) was conducted on a farm devoted to production of high-quality wines (Aglianico DOC), located in southern Italy (Campania region, Mirabella Eclano, AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two homogeneous zones (HZs) were identified; in each one a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional homogeneous zones (fHZs). For the second process, experimental plots were established and monitored for investigating soil–plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, leaf area index (LAI) measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). This experiment proved the usefulness of the physically based approach, also in the case of mapping viticulture microzoning

    Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses

    Get PDF
    1H NMR (nuclear magnetic resonance spectroscopy) has been used for metabolomic analysis of ‘Riesling’ and ‘Mueller-Thurgau’ white wines from the German Palatinate region. Diverse two-dimensional NMR techniques have been applied for the identification of metabolites, including phenolics. It is shown that sensory analysis correlates with NMR-based metabolic profiles of wine. 1H NMR data in combination with multivariate data analysis methods, like principal component analysis (PCA), partial least squares projections to latent structures (PLS), and bidirectional orthogonal projections to latent structures (O2PLS) analysis, were employed in an attempt to identify the metabolites responsible for the taste of wine, using a non-targeted approach. The high quality wines were characterized by elevated levels of compounds like proline, 2,3-butanediol, malate, quercetin, and catechin. Characterization of wine based on type and vintage was also done using orthogonal projections to latent structures (OPLS) analysis. ‘Riesling’ wines were characterized by higher levels of catechin, caftarate, valine, proline, malate, and citrate whereas compounds like quercetin, resveratrol, gallate, leucine, threonine, succinate, and lactate, were found discriminating for ‘Mueller-Thurgau’. The wines from 2006 vintage were dominated by leucine, phenylalanine, citrate, malate, and phenolics, while valine, proline, alanine, and succinate were predominantly present in the 2007 vintage. Based on these results, it can be postulated the NMR-based metabolomics offers an easy and comprehensive analysis of wine and in combination with multivariate data analyses can be used to investigate the source of the wines and to predict certain sensory aspects of wine
    • 

    corecore