43 research outputs found

    Accommodation: optical function and crystalline lens imaging

    Get PDF
    Esta tesis se centra en el estudio, por medio de varias técnicas in vivo, del proceso de acomodación del ojo humano. En primer lugar, haciendo uso de un sistema de Óptica Adaptativa, muestra que las aberraciones de alto orden disminuyen la precisión acomodativa, al mismo tiempo que tienden a incrementar las fluctuaciones de la acomodación. Por último, con un sistema de Tomografía de Coherencia Óptica de alta resolución, se hace imagen estática tridimensional del cristalino para diferentes demandas acomodativas. Del mismo modo, también se hace imagen dinámica bidimensional del cristalino durante la acomodación. El análisis de las imágenes permite obtener información de la respuesta acomodativa del ojo

    Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities

    Get PDF
    12 pages, 10 figures.We evaluated the visual benefit of correcting astigmatism and high-order aberrations with adaptive optics (AO) on visual acuity (VA) measured at 7 different luminances (ranging from 0.8 to 50 cd/m2) and two contrast polarities (black letters on white background, BoW, and white letters on black background, WoB) on 7 subjects. For the BoW condition, VA increased with background luminance in both natural and AO-corrected conditions, and there was a benefit of AO correction at all luminances (by a factor of 1.29 on average across luminances). For WoB VA increased with foreground luminance but decreased for the highest luminances. In this reversed polarity condition AO correction increased VA by a factor of 1.13 on average and did not produce a visual benefit at high luminances. The improvement of VA (averaged across conditions) was significantly correlated (p = 0.04) with the amount of corrected aberrations (in terms of Strehl ratio). The improved performance with WoB targets with respect to BoW targets is decreased when correcting aberrations, suggesting a role of ocular aberrations in the differences in visual performance between contrast polarities.MEyC FIS2005-04382, MCeI FIS 2008-02065, and EURYI award to SM; MEyC FPI Predoctoral Fellowship to LS; CSIC I3P Predoctoral Fellowship to EG.Peer reviewe

    Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities

    Get PDF
    12 pages, 10 figures.We evaluated the visual benefit of correcting astigmatism and high-order aberrations with adaptive optics (AO) on visual acuity (VA) measured at 7 different luminances (ranging from 0.8 to 50 cd/m2) and two contrast polarities (black letters on white background, BoW, and white letters on black background, WoB) on 7 subjects. For the BoW condition, VA increased with background luminance in both natural and AO-corrected conditions, and there was a benefit of AO correction at all luminances (by a factor of 1.29 on average across luminances). For WoB VA increased with foreground luminance but decreased for the highest luminances. In this reversed polarity condition AO correction increased VA by a factor of 1.13 on average and did not produce a visual benefit at high luminances. The improvement of VA (averaged across conditions) was significantly correlated (p = 0.04) with the amount of corrected aberrations (in terms of Strehl ratio). The improved performance with WoB targets with respect to BoW targets is decreased when correcting aberrations, suggesting a role of ocular aberrations in the differences in visual performance between contrast polarities.MEyC FIS2005-04382, MCeI FIS 2008-02065, and EURYI award to SM; MEyC FPI Predoctoral Fellowship to LS; CSIC I3P Predoctoral Fellowship to EG.Peer reviewe

    Visual simulators and programmable blur

    Get PDF
    CIP 2019, San Lorenzo de El Escorial, Madrid, 20th - 22nd, 2019Peer reviewe

    Tunable lenses: Dynamic characterization and fine-tuned control for high-speed applications

    Full text link
    Tunable lenses are becoming ubiquitous, in applications including microscopy, optical coherence tomography, computer vision, quality control, and presbyopic corrections. Many applications require an accurate control of the optical power of the lens in response to a time-dependent input waveform. We present a fast focimeter (3.8 KHz) to characterize the dynamic response of tunable lenses, which was demonstrated on different lens models. We found that the temporal response is repetitive and linear, which allowed the development of a robust compensation strategy based on the optimization of the input wave, using a linear time-invariant model. To our knowledge, this work presents the first procedure for a direct characterization of the transient response of tunable lenses and for compensation of their temporal distortions, and broadens the potential of tunable lenses also in high-speed applicationsVA and EL acknowledge financial support from Comunidad de Madrid and Marie Curie Action of the European Union FP7/2007-2013 COFUND 291820; XB from Comunidad de Madrid Doctorado Industrial IND2017/BMD-7670; EL from Spanish Government Ramon y Cajal Program RyC-2016-21125; EG from Spanish Government Torres-Quevedo Program PTQ-15-07432; LS from EU H2020 SME Innovation Associate GA-739882; EG from EIT Health; SM from ERC Grant Agreement ERC-2011-AdC 294099 and Spanish Government Grants FIS2014-56643-R; SM and CD from Spanish Government Grant FIS2017-84753-R; and CD from DTS16-0012

    Optical and visual quality with physical and visually simulated presbyopic multifocal contact lenses

    Get PDF
    16 pags. 6 figs., 1 tab.Purpose: As multifocal contact lenses (MCLs) expand as a solution for presbyopia correction, a better understanding of their optical and visual performance becomes essential. Also, providing subjects with the experience of multifocal vision before contact lens fitting becomes critical, both to systematically test different multifocal designs and to optimize selection in the clinic. In this study, we evaluated the ability of a simultaneous vision visual simulator (SimVis) to represent MCLs. Methods: Through focus (TF) optical and visual quality with a center-near aspheric MCL (low, medium and high near adds) were measured using a multichannel polychromatic Adaptive Optics visual simulator equipped with double-pass, SimVis (temporal multi-plexing), and psychophysical channels to allow measurements on-bench and in vivo. On bench TF optical quality of SimVis-simulated MCLs was obtained from double-pass (DP) images and images of an E-stimulus using artificial eyes. Ten presbyopic subjects were fitted with the MCL. Visual acuity (VA) and DP retinal images were measured TF in a 4.00 D range with the MCL on eye, and through SimVis simulations of the same MCLs on the same subjects. Results: TF optical (on bench and in vivo) and visual (in vivo) quality measurements captured the expected broadening of the curves with increasing add. Root mean square difference between real and SimVis-simulated lens was 0.031/0.025 (low add), 0.025/0.015 (medium add), 0.019/0.011 (high add), for TF DP and TF LogMAR VA, respectively. A shape similarity metric shows high statistical values (lag κ = 0), rho = 0.811/0.895 (low add), 0.792/0.944 (medium add), and 0.861/0.915 (high add) for TF DP/LogMAR VA, respectively. Conclusions: MCLs theoretically and effectively expand the depth of focus. A novel simulator, SimVis, captured the through-focus optical and visual performance of the MCL in most of the subjects. Visual simulators allow subjects to experience vision with multifocal lenses prior to testing them on-eye. Translational Relevance: Simultaneous visual simulators allow subjects to experience multifocal vision non-invasively. We demonstrated equivalency between real multifocal contact lenses and SimVis-simulated lenses. The results suggest that SimVis is a suitable technique to aid selection of presbyopic corrections in the contactology practice.Supported by the European Research Council (ERC-2011-AdC 294099) to SM; Spanish Government (FIS2017-84753R) to SM, and pre-doctoral fellowship (FPU16/01944) to SA; Collaborative agreement with Johnson & Johnson Vision, Inc., Research & Development, Jacksonville, FL, USA

    Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations

    Get PDF
    16 pags., 10 figs., 1 tab. -- OCIS codes: (330.0330) Vision, color, and visual optics; (330.7327) Visual optics, ophthalmic instrumentation; (330.5370) Physiological optics; (220.1010) Aberrations (global); (220.1080) Active or adaptive optics.Fast tunable lenses allow an effective design of a portable simultaneous vision simulator (SimVis) of multifocal corrections. A novel method of evaluating the temporal profile of a tunable lens in simulating different multifocal intraocular lenses (M-IOLs) is presented. The proposed method involves the characteristic fitting of the through-focus (TF) optical quality of the multifocal component of a given M-IOL to a linear combination of TF optical quality of monofocal lenses viable with a tunable lens. Three different types of M-IOL designs are tested, namely: segmented refractive, diffractive and refractive extended depth of focus. The metric used for the optical evaluation of the temporal profile is the visual Strehl (VS) ratio. It is shown that the time profiles generated with the VS ratio as a metric in SimVis resulted in TF VS ratio and TF simulated images that closely matched the TF VS ratio and TF simulated images predicted with the M-IOL. The effects of temporal sampling, varying pupil size, monochromatic aberrations, longitudinal chromatic aberrations and temporal dynamics on SimVis are discussed.Consejería de Educación, Juventud y Deporte of Comunidad de Madrid and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement (n 291820); Ministerio de Economía y Competitividad (DTS16- 00127); Spanish Government Torres-Quevedo Program (PTQ-15-07432); EIT Health e.V. Grant agreement (HS-2016-SPAIN-03); ERC Grant Agreement (ERC-2011-AdC 294099); Spanish Government Grant (FIS2014-56643-R).Peer Reviewe

    Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging

    Get PDF
    We present an optimization method to retrieve the gradient index (GRIN) distribution of the in-vitro crystalline lens from optical path difference data extracted from OCT images. Three-dimensional OCT images of the crystalline lens are obtained in two orientations (with the anterior surface up and posterior surface up), allowing to obtain the lens geometry. The GRIN reconstruction method is based on a genetic algorithm that searches for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens. Computer simulations showed that, for noise of 5 μm in the surface elevations, the GRIN is recovered with an accuracy of 0.003 and 0.010 in the refractive indices of the nucleus and surface of the lens, respectively. The method was applied to retrieve threedimensionally the GRIN of a porcine crystalline lens in vitro. We found a refractive index ranging from 1.362 in the surface to 1.443 in the nucleus of the lens, an axial exponential decay of the GRIN profile of 2.62 and a meridional exponential decay ranging from 3.56 to 5.18. The effect of GRIN on the aberrations of the lens also studied. The estimated spherical aberration of the measured porcine lens was 2.87 μm assuming a homogenous equivalent refractive index, and the presence of GRIN shifted the spherical aberration toward negative values (-0.97 μm), for a 6-mm pupil. © 2010 Optical Society of America.The authors acknowledge funding from (Ministerio de Ciencia e Innovación) grants FIS2008- 02065 and and EURYI-05-102-ES (EURHORCs-ESF) to SM; CSIC I3P Program to AdC; CSIC JAE-Doc Program to DS.Peer Reviewe

    In vivo human crystalline lens topography

    Get PDF
    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism (Z 22 2 ranging from -11 to -1 μm) and the posterior lens showing vertical astigmatism (Z 22 2 ranging from 6 to 10 μm). © 2012 Optical Society of America.The authors acknowledge funding from MICINN FIS2008-02065 and FIS2011-25637, EURHORCs-ESF EURYI-05-102-ES, ERC-2011-AdG-294099 and CEN-2091021 to S. Marcos.Peer Reviewe

    Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT

    Get PDF
    Custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT) provided with automatic quantification and distortion correction algorithms was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo in four subjects, for accommodative demands between 0 to 6 D in 1 D steps. Anterior and posterior lens radii of curvature decreased with accommodative demand at rates of 0.73 and 0.20 mm/D, resulting in an increase of the estimated optical power of the eye of 0.62 D per diopter of accommodative demand. Dynamic fluctuations in crystalline lens radii of curvature, anterior chamber depth and lens thickness were also estimated from dynamic 2-D OCT images (14 Hz), acquired during 5-s of steady fixation, for different accommodative demands. Estimates of the eye power from dynamical geometrical measurements revealed an increase of the fluctuations of the accommodative response from 0.07 D to 0.47 D between 0 and 6 D (0.044 D per D of accommodative demand). A sensitivity analysis showed that the fluctuations of accommodation were driven by dynamic changes in the lens surfaces, particularly in the posterior lens surface. © 2013 Optical Society of America.The authors acknowledge funding from Predoctoral fellowship CSIC-I3P2006 to EG; FNP Ventures Program co-financed by the EU Funds to MG; EURYI-01/2008-PL (EURHORCs) to MW; MICINN FIS2011-02065 to SM. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n. [294099] to SM. The authors acknowledge technical hardware and software support of Ireneusz Grulkowski and Maciej Szkulmowski from NCU Toruń.Peer Reviewe
    corecore