4,108 research outputs found
Pointing compensation system for spacecraft instruments
A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented
The Marshall Space Flight Center Fault Detection Diagnosis and Recovery Laboratory
The Fault Detection Diagnosis and Recovery Lab (FDDR) has been developed to support development of,fault detection algorithms for the flight computer aboard the Ares I and follow-on vehicles. It consists of several workstations using Ethernet and TCP/IP to simulate communications between vehicle sensors, flight computers, and ground based support computers. Isolation of tasks between workstations was set up intentionally to limit information flow and provide a realistic simulation of communication channels within the vehicle and between the vehicle and ground station
Making co-enrolment feasible for randomised controlled trials in paediatric intensive care.
Enrolling children into several trials could increase recruitment and lead to quicker delivery of optimal care in paediatric intensive care units (PICU). We evaluated decisions taken by clinicians and parents in PICU on co-enrolment for two large pragmatic trials: the CATCH trial (CATheters in CHildren) comparing impregnated with standard central venous catheters (CVCs) for reducing bloodstream infection in PICU and the CHIP trial comparing tight versus standard control of hyperglycaemia
Coming to America: Multiple Origins of New World Geckos
Geckos in the Western Hemisphere provide an excellent model to study faunal assembly at a continental scale. We generated a time-calibrated phylogeny, including exemplars of all New World gecko genera, to produce a biogeographic scenario for the New World geckos. Patterns of New World gecko origins are consistent with almost every biogeographic scenario utilized by a terrestrial vertebrate with different New World lineages showing evidence of vicariance, dispersal via temporary land bridge, overseas dispersal, or anthropogenic introductions. We also recovered a strong relationship between clade age and species diversity, with older New World lineages having more species than more recently arrived lineages. Our data provide the first phylogenetic hypothesis for all New World geckos and highlight the intricate origins and ongoing organization of continental faunas. The phylogenetic and biogeographical hypotheses presented here provide an historical framework to further pursue research on the diversification and assembly of the New World herpetofauna
Repeated Evolution of Digital Adhesion in Geckos: A Reply to Harrington and Reeder
We published a phylogenetic comparative analysis that found geckos had gained and lost adhesive toepads multiple times over their long evolutionary history (Gamble et al., PLoS One, 7, 2012, e39429). This was consistent with decades of morphological studies showing geckos had evolved adhesive toepads on multiple occasions and that the morphology of geckos with ancestrally padless digits can be distinguished from secondarily padless forms. Recently, Harrington & Reeder (J. Evol. Biol., 30, 2017, 313) reanalysed data from Gamble et al. (PLoS One, 7, 2012, e39429) and found little support for the multiple origins hypothesis. Here, we argue that Harrington and Reeder failed to take morphological evidence into account when devising ancestral state reconstruction models and that these biologically unrealistic models led to erroneous conclusions about the evolution of adhesive toepads in geckos
Transport Properties of Carbon Nanotube C Peapods
We measure the conductance of carbon nanotube peapods from room temperature
down to 250mK. Our devices show both metallic and semiconducting behavior at
room temperature. At the lowest temperatures, we observe single electron
effects. Our results suggest that the encapsulated C molecules do not
introduce substantial backscattering for electrons near the Fermi level. This
is remarkable given that previous tunneling spectroscopy measurements show that
encapsulated C strongly modifies the electronic structure of a nanotube
away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one
  orginally submitted as arXiv:cond-mat/0606258. The other one is
  arXiv:0704.3641 [cond-mat
Spacecraft camera image registration
A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2)
The contested and contingent outcomes of Thatcherism in the UK
The death of Margaret Thatcher in April 2013 sparked a range of discussions and debates about the significance of her period in office and the political project to which she gave her name: Thatcherism. This article argues that Thatcherism is best understood as a symbolically important part of the emergence of first-phase neoliberalism. It engages with contemporary debates about Thatcherism among Marxist commentators and suggests that several apparently divergent positions can help us now reach a more useful analysis of Thatcherism’s short- and long-term outcomes for British political economy. The outcomes identified include: an initial crisis in the neoliberal project in the UK; the transformation of the party political system to be reflective of the politics of neoliberalism, rather than its contestation; long-term attempts at the inculcation of the neoliberal individual; de-industrialisation and financial sector dependence; and a fractured and partially unconscious working class. In all long-term outcomes, the contribution of Thatcherism is best understood as partial and largely negative, in that it cleared the way for a longer-term and more constructive attempt to embed neoliberal political economy. The paper concludes by suggesting that this analysis can inform current debates on the left of British politics about how to oppose and challenge the imposition of neoliberal discipline today
Takotsubo cardiomyopathy with severe bradyarrhythmia following epidural insertion
Peer reviewedPublisher PD
- …
