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Abstract 
We published a phylogenetic comparative analysis that found geckos had gained and lost adhesive toepads 
multiple times over their long evolutionary history (Gamble et al., PLoS One, 7, 2012, e39429). This was 
consistent with decades of morphological studies showing geckos had evolved adhesive toepads on multiple 
occasions and that the morphology of geckos with ancestrally padless digits can be distinguished from 
secondarily padless forms. Recently, Harrington & Reeder (J. Evol. Biol., 30, 2017, 313) reanalysed data from 
Gamble et al. (PLoS One, 7, 2012, e39429) and found little support for the multiple origins hypothesis. Here, we 
argue that Harrington and Reeder failed to take morphological evidence into account when devising ancestral 
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state reconstruction models and that these biologically unrealistic models led to erroneous conclusions about 
the evolution of adhesive toepads in geckos. 

Reconstructing the evolution of phenotypic traits across the tree of life has long been a topic of interest in 
evolutionary biology, and numerous methods have been devised that employ phylogenies to trace a trait's 
evolutionary history (Swofford & Maddison, 1987; Harvey & Pagel, 1991; Schluter et al., 1997; 
Cunningham et al., 1998; Pagel, 1999; Nunn, 2011). These phylogeny-based trait reconstructions represent 
historical hypotheses, which can inform further investigation into that trait's development and evolution 
(Strathmann & Eernisse, 1994; Schluter et al., 1997; Cunningham et al., 1998; Lee & Shine, 1998; 
Griffith et al., 2015). Recently developed methods, such as the binary-state speciation and extinction (BiSSE) 
model, allow for the co-estimation of a trait's evolutionary history along with its potential effect on 
diversification rates (Maddison et al., 2007; FitzJohn et al., 2009). BiSSE, and related models, constituted an 
important advance in comparative methods because they corrected a known bias that can occur in ancestral 
state reconstruction methods when diversification rates are state-dependent (Maddison, 2006). Furthermore, 
BiSSE models offered a potential test of whether a trait can be identified as a ‘key innovation’: one that is 
associated with increased efficiency of resource usage and the promotion of ecological opportunity 
(Maddison et al., 2007; FitzJohn et al., 2009; O'Meara & Beaulieu, 2016). Unfortunately, BiSSE models, as 
currently implemented, are prone to high type I error rates, biased parameter estimates and incorrect ancestral 
state reconstructions (Davis et al., 2013; Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015). Such 
revelations mean that the results and conclusions of some published analyses employing BiSSE may be 
erroneous (Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015; O'Meara & Beaulieu, 2016). 

In a recent paper, Harrington & Reeder (2017), hereafter referred to as H&R, reanalysed data from two papers 
that had applied BiSSE to the reconstruction of ancestral states. The data sets were chosen because the results 
in the original papers departed from prior published hypotheses and raised the possibility that the unexpected 
outcomes they generated were due to BiSSE's unreliability. The first data set examined the evolution of adhesive 
toepads in geckos (Gamble et al., 2012) while the second involved the evolution of viviparity across squamates 
(Pyron & Burbrink, 2014). H&R used several methods to diagnose and alleviate potential BiSSE-related problems 
with these data, which included testing a priori for shifts in diversification rates among sampled lineages, and 
exploring a wide variety of different models, including the newly developed hidden state speciation and 
extinction (HiSSE) models, which aim to correct some of the problems encountered when applying BiSSE 
(Beaulieu & O'Meara, 2016). H&R determined that their revised methodology, including use of an expanded set 
of models to reconstruct ancestral states, left little support for the original conclusions drawn by both papers. 
Thus, they considered it unlikely that geckos have repeatedly evolved adhesive toepads and that the most 
recent common ancestor of squamates was viviparous. 

There is no doubt that BiSSE and related models have serious methodological flaws (Davis et al., 2013; Maddison 
& FitzJohn, 2015; Rabosky & Goldberg, 2015). However, not every study that has used BiSSE is necessarily 
unsound, and each should be reanalysed and judged independently. In particular, analyses that failed to find an 
association between trait evolution and net diversification rates may be less suspect than analyses that find 
positive associations between these parameters because one of BiSSE's failures is increased type I errors 
(Rabosky & Goldberg, 2015). With this in mind, we respond to H&R's comments regarding the reanalysis of the 
gecko toepad data (Gamble et al., 2012). In particular, we focus on two of the main points from the H&R paper. 
First, we argue that the results and conclusions of Gamble et al. (2012) were neither unexpected nor a BiSSE 
artefact. Second, we posit that ambiguity in H&R's gecko toepad ancestral state reconstructions resulted from 
their use of irreversible models, which are biologically unrealistic given our knowledge of gecko morphology. 
When just the biologically plausible reversible models are examined, the HiSSE results are concordant with those 
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advanced by Gamble et al. (2012). Finally, we offer a more general comment about the use of ancestral state 
reconstructions to study the repeated evolution of phenotypes. 

Before we address our concerns with H&R, we feel it is worth reiterating our previously published conclusions 
(Gamble et al., 2012). Using a large, multigene gecko phylogeny, Gamble et al. (2012) found that the most 
recent common ancestor to geckos lacked adhesive toepads, that adhesive toepads have been gained and lost 
multiple times with approximately equal frequency and that this has occurred within several lineages of the 
Gekkota. Importantly, the BiSSE analyses revealed no association between toepad gains or losses and 
diversification rates. These results were placed into a broader context by re-examining some of the 
morphological data. In particular, Gamble et al. (2012) highlighted morphological transformations in an 
unambiguous gain of adhesive toepads in the genus Hemidactylus and several losses of adhesion in the southern 
African Pachydactylus/Chondrodactylus group. 

H&R claim that the Gamble et al.'s (2012) results were unexpected and that this departure from the ‘traditional’ 
view was due to problems associated with BiSSE. First, Gamble et al.'s (2012) results were not unique to their 
BiSSE analyses but were broadly concordant with additional results using parsimony and maximum likelihood. 
Moreover, Gamble et al.'s (2012) failure to find an association between toepad gains or losses and 
diversification rates places it outside the zone of type I errors that make BiSSE problematic. Concordance across 
multiple comparative phylogenetic methods, on its own, provides insufficient grounds for accepting or rejecting 
one hypothesis relative to another, particularly when all available methods have some failings 
(Schluter et al., 1997; Zhang & Nei, 1997; Maddison, 2006; Goldberg & Igić, 2008; Rabosky & Goldberg, 2015; 
Wright et al., 2015). However, concordance can indicate signal in the data that is robust to the varying 
assumptions of the different methods used. Furthermore, concordance can help evaluate support for one 
hypothesis or another when combined with additional means of hypothesis testing, such as comparative 
morphology or developmental data (see below), (Cunningham et al., 1998; Lee & Shine, 1998; 
Griffith et al., 2015; Rabosky & Goldberg, 2015). H&R emphasize the conflict between the results of 
Gamble et al. (2012) and an earlier work (Underwood, 1954) (Fig. 1). However, in the time between 
Underwood's (1954) and Gamble et al. (2012) contributions, other authors had addressed the evolution of 
adhesive toepads in geckos and had arrived at conclusions that differed from those of Underwood 
(Haacke, 1976; Russell, 1976, 1979, 2002; Joger, 1985; Kluge & Nussbaum, 1995; Russell et al., 1997; 
Bauer et al., 2005). To that end, it is worth laying out the details of Underwood's (1954) hypothesis and 
exploring differences between his and Gamble et al.'s (2012) conclusions, and the phylogenetic and anatomical 
framework within which each was set. Underwood (1954), like others (Haacke, 1976; Russell, 1979), noted that 
members of the family Eublepharidae exhibit no morphological evidence of ever having had adhesive toepads. 
Underwood's (1954) estimates of gekkotan phylogeny at the time placed eublepharids as the sister clade to the 
remaining geckos (Fig. 1). Using this phylogenetic arrangement, Underwood hypothesized that adhesive toepads 
evolved just once in the most recent common ancestor to the non-eublepharid geckos and that all padless non-
eublepharid geckos exhibited a secondary loss of toepads. However, recent phylogenies contradict the idea that 
eublepharids are the sister clade to all other geckos and instead place them nested within the Gekkota as the 
sister lineage to a clade composed of the Gekkonidae, Sphaerodactylidae and Phyllodactylidae (Han et al., 2004; 
Townsend et al., 2004; Gamble et al., 2008a,b, 2011; Wiens et al., 2012; Zheng & Wiens, 2016; Fig. 1). This alone 
renders a single origin of adhesive toepads in geckos far less likely. When one considers that eublepharids are 
not the only ancestrally padless geckos (Haacke, 1976; Russell, 1976, 1979; Russell et al., 2015), a single-origin 
hypothesis becomes even more untenable. 
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Figure 1 Morphological evidence countering the hypothesis of a single origin of adhesive toepads in geckos. (a) 
Phylogenetic hypothesis proposed by Underwood (1954) that prompted him to suggest a single origin of 
toepads in the non-eublepharid geckos. (b) Current estimates of phylogenetic relationships among gecko 
families (Gamble et al., 2012), with timescale from Gamble et al. (2015b). Four of the seven families have some 
species with ancestrally padless digits, as identified through detailed morphological examination. These include 
all species in the Carphodactylidae and Eublepharidae and one or more species in the following 
genera: Agamura, Crossobamon, Narudasia, Ptenopus, Stenodactylus and Tropiocolotes (Gekkonidae); Gonatode
s and Quedenfeldtia (Sphaerodactylidae) (Underwood, 1954; Haacke, 1976; Russell, 1976, 1979; 
Russell et al., 2015). Note that the Pygopodidae are limbless and limb-reduced gekkotans. 
 

Morphological data, when examined in the light of the current gekkotan phylogeny, make it clear that geckos 
have evolved adhesive toepads on multiple occasions (Fig. 1). Several lineages have a pedal morphology that is 
fully consistent with the ancestrally padless condition, which is expressed widely among lizard families in 
general. Also, it has been known for decades that the morphology of geckos with ancestrally padless digits can 
be distinguished from secondarily padless forms (Haacke, 1976; Russell, 1976, 1979, 2002; Russell et al., 2015). 
Reversion to a secondarily padless condition carries with it evidence of the prior presence of this structural 
complex and is fully consistent with Dollo's law (Gould, 1970; Haacke, 1976; Russell, 1976, 1979, 2002; 
Russell et al., 2015). The complete secondary absence of the adhesive toepad apparatus, as in Chondrodactylus 
angulifer (Gekkonidae) and Lucasium damaeum (Diplodactylidae), does not result in reversion to the ancestral 
phalangeal morphology or proportionality. Thus, it is highly improbable that fully expressed toepads could be 
forsaken and the ancestral state of all digital features (skeletal, muscular, tendinous, circulatory) be fully 
reconstituted. Functionally adhesive toepads are complex, integrated, modular structures that are gained, and 
lost, in a stepwise fashion (Russell, 1976, 1979; Russell et al., 2015; Higham et al., 2016). The fully expressed 
adhesive apparatus includes the transformation of epidermal spinules into elaborate setae that enable adhesion 
through frictional and van der Waals interactions (Russell, 1975, 2002; Autumn et al., 2000, 2002, 2006), 
expansion of the subdigital surface into scansors (Russell, 1975, 1976, 1979) and modification of muscles and 
tendons to control the scansors (Russell, 1975, 1976, 1979). Additional, lineage-specific, adaptations include the 
evolution of specialized phalangeal morphology, blood sinuses and adipose pads to enhance scansor contact 
with the substrate (Russell, 1981; Russell & Bauer, 1988; Bauer & Russell, 1990), reconfiguration of the form of 
the autopodium bringing about a symmetrical disposition of the digits (Russell et al., 1997), the elevation of the 
penultimate and ungual phalanges to segregate these from the underlying scansors (Russell, 1976; 
Gamble et al., 2012), scansors (with fundamentally different control mechanisms than those exhibited by basally 
derived toepads) limited to the distal tips of the digit to facilitate movement across dusty substrates (Russell & 
Delaugerre, 2017) and various modifications of digit I (Russell & Bauer, 1990). Indeed, because the ancestral 
condition in digit I is to possess only two phalanges, it is subject to constraints with regard to how an adhesive 
apparatus can be accommodated and operated (Russell & Bauer, 2008). Digit I, therefore, by virtue of the 
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various patterns of configuration that it shows, provides support for the multiple origins of toepads in the 
Gekkota. In lineages that have acquired adhesive toepads, digit I is variously: 1) omitted from the expression of 
the adhesive mechanism (thus retaining the ancestral pattern of phalanx configuration, in contrast to the 
modifications shown by the other digits); 2) greatly reduced in size (to the point of being vestigial in some 
lineages); or 3) exhibits extreme morphological modifications (such as hyperphalangy or the loss of the claw and 
massive elongation of the ungual phalanx) in association with the accommodation and operation of the adhesive 
mechanism (Russell, 2002). 

All of the structural diversity observed across the Gekkota, and the presence of adhesive phenotypes at all 
stages of transformation (Russell et al., 2015), points to multiple origins of this complex trait. Furthermore, as 
mentioned, many gecko species are secondarily padless but retain clear anatomical indicators of their pad-
bearing ancestry (Haacke, 1976; Russell, 1976, 1979; Lamb & Bauer, 2006). The reduction of ‘adhesive toepads’ 
to a single trait, without consideration of the unique morphological intricacies (Russell, 1976, 1979) that 
characterize the adhesive apparatus of various gekkotan lineages, greatly oversimplifies the situation and 
overlooks biological evidence essential to the interpretation of the origin of novel morphologies that exhibit 
functional equivalency (Russell, 1979; Koehl, 1996). This does not mean that comparative analyses that code 
complex traits, such as adhesive digits in geckos (Gamble et al., 2012), as a single, binary trait are without merit. 
Such studies can provide a ‘bird's-eye view’ of a complex trait's evolution and can inform future research, 
including the evolution of eyes (Oakley & Cunningham, 2002); sex chromosomes (Gamble et al., 2015a); vocal 
learning in birds (Jarvis et al., 2000); or whole-organism ecomorphologies (Losos et al., 1998). However, it is 
important that such studies do not become so reductionist that they fail to acknowledge their own assumptions 
and limitations. 

H&R also claim that their results are consistent with ‘… recent discoveries of stem gekkotan fossils possessing 
toepads, suggesting that toepads arose very early in the diversification of Gekkota’. The existence of Cretaceous 
fossil geckos with adhesive toepads is not evidence that the most recent common ancestor of geckos possessed 
toepads just that toepads arose early in gekkotan evolution. Furthermore, the fragmented nature and uncertain 
phylogenetic placement of most gekkotan fossils limits their usefulness in understanding toepad evolution. The 
phylogeny of Cretaceous gekkotans, in particular, remains fluid. As is often the case for fossils, these taxa, with 
one exception noted by Daza et al. (2016) – which is itself a hatchling – are limited to isolated partial skulls (e.g. 
Mongolian material), or partial limbs/digits, (e.g. Myanmar amber fossils) (Daza et al., 2014). Thus, their precise 
position in any phylogenetic hypothesis is tentative at best. This is demonstrated by phylogenetic discordance 
evident in a series of papers as a result of the inclusion of just one additional specimen (Daza et al., 2012, 2016; 
Conrad & Daza, 2015). None of the Cretaceous fossils preserves characters that would unambiguously place 
them in the crown Gekkota; however, molecular dating suggests that many crown gekkotan lineages were 
present at that time (Gamble et al., 2008a, 2015b; Zheng & Wiens, 2016). The one apparent stem-group 
gekkotan is a hatchling, and some of the character states that place it in that position may be a reflection of its 
developmental stage (e.g. large basicranial fenestra, unfused frontal bones) and even if it is correctly placed – it 
cannot be determined whether it had toepads or not (Daza et al., 2016). Evidence of toepads from the same 
time frame comes from specimens known only from hands or feet which lack any characters that are diagnostic 
at a hierarchically more inclusive level than genus (Arnold & Poinar, 2008; Daza et al., 2016). Thus, although we 
know that toepads were present by 99 million years ago, we cannot determine the phylogenetic placement 
within Gekkota of the taxa that bore them. As for the digital morphologies, these are represented by 
(1) Cretaceogekko (Arnold & Poinar, 2008), the manus briefly described by Daza et al. (2016) and (2) the large 
foot from the same paper. The former pattern is not unlike the toepad configurations seen in many modern 
geckos with ‘basal’ pads (i.e. physically proximal on the digits), whereas the latter is very distinctive and most 
similar to Paragehyra, an extant Madagascan genus. So, to some extent, it could be stated that these digital 
morphologies are very similar to those of crown-group gekkotans. It is not, however, possible to determine 
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whether one pattern arose from another or whether either of these patterns could be considered plesiomorphic 
for Gekkota. Although we accept the possibility that padded stem gekkotans may have existed, this cannot 
currently be demonstrated. Given our argument that toepad ‘gains’ really are independent elaborations of a 
system based on the spinulate Oberhäutchen, a feature present ancestrally in crown gekkotans, and presumably 
also in stem gekkotans, we would not find it surprising if character state changes in adhesive toepads occurred 
among Cretaceous lineages as well. In other words, the presence of toepads in a stem gekkotan lineage would 
not preclude lack of toepads as being the plesiomorphic condition for crown gekkotans. This could only be 
resolved with a robust phylogeny that includes Cretaceous geckos, which is lacking, and by examining larger 
sample sizes of Cretaceous fossils that might reveal whether both padded and padless conditions were present 
at that time (currently n = 3 for specimens with preserved digits). Recently, Simões et al. (In Press) argued that 
two Jurassic lizards are stem gekkotans and that they show evidence of adhesive toepads. Although their 
interpretations are interesting and may well be valid, it is worth noting the following: (1) there is disagreement 
on the placement of Eichstaettisaurus and Ardeosaurus as stem gekkotans (Evans & Barbadillo, 1999; Evans & 
Wang, 2005; Conrad, 2008; Reeder et al., 2015); (2) other authors have found similarities of digit structure 
between Eichstaettisaurus and primitively padless geckos (Russell et al., 1997); and (3) toepads, whether 
present or absent in these Jurassic forms, do not refute the hypothesis that independent gains or re-
elaborations of the fully expressed adhesive apparatus (based on the plesiomorphic spinulate Oberhäutchen) 
can occur. 

Newly developed HiSSE models may be one way of remedying some of the problems inherent in BiSSE analyses 
(Beaulieu & O'Meara, 2016). H&R examined 16 variations of HiSSE models to reconstruct the evolution of gecko 
adhesive toepads. These included five irreversible models that restrict character transitions to only change from 
a padded to a padless state. Thus, an irreversible model forces the most recent common ancestor of geckos to 
have possessed adhesive toepads, with all padless geckos being accounted for by a loss of toepads (Harrington & 
Reeder, 2017), similar to Underwood's (1954) hypothesis (but note that Underwood excluded the 
Eublepharidae). H&R found the model that best fit their data was one of their irreversible models based on the 
corrected Akaike information criterion (AICc) scores. However, two reversible models had AICc scores only 
slightly worse than their best fit irreversible model. To account for this model uncertainty, H&R illustrated their 
ancestral state reconstruction averaged across all models, weighted according to AICc score. Because the 
irreversible models force the most recent common ancestor of geckos to have possessed adhesive toepads, 
some proportion of their results must exhibit a single origin of adhesive toepads. The resulting uncertainty in 
their ancestral state reconstructions led H&R to state, ‘…we find no instances of decisive support for multiple 
gains of toepads, in contrast with the results of Gamble et al. (2012)’. However, because geckos with digit 
morphologies entirely consistent with ancestral padlessness occur across the gecko phylogeny (Fig. 1), the 
employment of irreversible models appears biologically improbable. We reanalysed the Gamble et al.'s (2012) 
data using H&R's models (Fig. 2). We were able to recapitulate their results and show uncertainty at the root 
state when ancestral state reconstruction is averaged across all models, weighted according to AICc scores 
(Fig. 2a). However, examining the reversible and irreversible models separately confirms that the irreversible 
models are solely responsible for that root uncertainty (Fig. 2b). Indeed, an analysis of just the reversible models 
recovers a padless gekkotan ancestor with multiple gains and losses of adhesive toepads (Fig. 2c), consistent 
with the Gamble et al.'s (2012) results using BiSSE, maximum likelihood and parsimony. Thus, H&R's lack of 
support for multiple gains of gecko toepads results from an artefact of their application of models that are a 
priori unrealistic based on our current knowledge of morphology. It is the ubiquitous presence of epidermal 
spinules (Ruibal & Ernst, 1965; Maderson, 1970) and their modification into setae (Peattie, 2008; 
Russell et al., 2015) that serves as the key innovation (Russell, 1979) leading, on multiple occasions, to the 
subsequent elaboration of an adhesive apparatus (Russell et al., 2015). These outcomes ultimately become 
clustered under the blanket term ‘toepads’, but it is not the latter that is the presumed key innovation. 
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Figure 2 Ancestral state reconstruction of adhesive toepad evolution in geckos using model-averaged HiSSE. 
Black branches indicate toepads present (state 1), white branches indicate toepads absent (state 0), and grey 
branches indicate uncertainty across sampled models. The colour of the branch outline indicates net 
diversification rates. Histograms below the trees designate the frequency and value of net diversification rates 
as well as state frequencies (0 or 1) for extant taxa. (a) HiSSE results model-averaged across all tested models. 
Combined, these models suggest considerable uncertainty about the presence of adhesive toepads in the most 
recent common ancestor of geckos. This is equivalent to Figure 2 of Harrington & Reeder (2017). (b) HiSSE 
results model-averaged across only irreversible models. Irreversible models support the presence of adhesive 
toepads in the most recent common ancestor of geckos. (c) HiSSE results model-averaged across all models 
except the irreversible models. Reversible models support the absence of adhesive toepads in the most recent 
common ancestor of geckos. This is consistent with the conclusions of Gamble et al. (2012). 
 

The ability to reconstruct a trait's evolution onto a phylogeny is an important tool for developing and testing 
hypotheses about the evolution of repeated patterns observed across the tree of life (Harvey & Pagel, 1991). 
Although the power and general applicability of modern model-based comparative methods are grounded in 
their quantitative nature, methodological rigour and repeatability, this does not argue for their application in a 
vacuum. Multiple lines of biological evidence can play a role in model-based phylogenetic comparative methods, 
both by corroborating or falsifying the homology of the traits under consideration and by informing the models 
under which these traits may evolve (Koehl, 1996). Careful examination of morphology, along with 
developmental data, can distinguish ancestral from derived forms and subsequently be incorporated into tests 
of specific hypotheses emergent from phylogenetic comparative analyses (Bock, 1959; Strathmann & 
Eernisse, 1994; Blackburn, 2015; Griffith et al., 2015). 
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