483 research outputs found

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure

    Transport Properties of Carbon Nanotube C60_{60} Peapods

    Full text link
    We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results suggest that the encapsulated C60_{60} molecules do not introduce substantial backscattering for electrons near the Fermi level. This is remarkable given that previous tunneling spectroscopy measurements show that encapsulated C60_{60} strongly modifies the electronic structure of a nanotube away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one orginally submitted as arXiv:cond-mat/0606258. The other one is arXiv:0704.3641 [cond-mat

    Calculation of Spectral Degradation Due to Contaminant Films on Infrared and Optical Sensors

    Get PDF
    Molecular surface contaminants can cause degradation of optical systems, especially if the contaminants exhibit strong absorption bands in the region of interest. Different strategies for estimation of spectral degradation responses due to uniform films for various types of systems are reviewed. One tool for calculating the effects of contaminant film thickness on signal degradation in the mid IR region is the simulation program CALCRT. The CALCRT database will be reviewed to correlate spectral n and k values associated with specific classes of organic functional groups. Various schemes are also investigated to estimate the spectral degradation in the UV-Vis region. Experimental measurements of reflectance changes in the IR to UV-Vis regions due to specific contaminants will be compared. Approaches for estimating changes in thermal emissivity and solar absorptivity will also be discussed

    Tunable singlet-triplet splitting in a few-electron Si/SiGe quantum dot

    Full text link
    We measure the excited-state spectrum of a Si/SiGe quantum dot as a function of in-plane magnetic field, and we identify the spin of the lowest three eigenstates in an effective two-electron regime. The singlet-triplet splitting is an essential parameter describing spin qubits, and we extract this splitting from the data. We find it to be tunable by lateral displacement of the dot, which is realized by changing two gate voltages on opposite sides of the device. We present calculations showing the data are consistent with a spectrum in which the first excited state of the dot is a valley-orbit state.Comment: 4 pages with 3 figure

    Effect of Water Stress on the Chloroplast Antioxidant System

    Full text link

    Recent Case Decisions

    Get PDF
    corecore