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ABSTRACT 
 
Molecular surface contaminants can cause degradation of optical systems, especially if the contaminants exhibit strong 
absorption bands in the region of interest.  Different strategies for estimation of spectral degradation responses due to 
uniform films for various types of systems are reviewed.   One tool for calculating the effects of contaminant film 
thickness on signal degradation in the mid IR region is the simulation program CALCRT.  The CALCRT database will 
be reviewed to correlate spectral n and k values associated with specific classes of organic functional groups.  Various 
schemes are also investigated to estimate the spectral degradation in the UV-Vis region.  Experimental measurements of 
reflectance changes in the IR to UV-Vis regions due to specific contaminants will be compared.  Approaches for 
estimating changes in thermal emissivity and solar absorptivity will also be discussed.   
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1.  INTRODUCTION 
 
The build up of molecular film contaminants on cold optics or detectors can affect the function of a spectrometer.  One 
of the most common molecular film contaminants in cryogenic applications is water-ice.  Water can have an appreciable 
vapor pressure in the spectrometer due to the outgassing of multilayer insulation (MLI) blanketing, as well as other 
materials, around the spectrometer.  Other contaminants or mixture of molecular contaminants may also be introduced 
into the system by the presence of paints, composites, and other materials found in the spectrometer chamber.  These 
contaminants may include CO2, silicone, or generic hydrocarbon that can also affect signal intensity for specific 
bandpass regions. Contaminants can be a great problem to the optimal operation of infrared and optical systems.  This 
problem has been the subject of various investigations, with only a few examples sited here1-5. 
 
Infrared (IR) radiation in the ~10,000-100 cm-1 range is absorbed by molecules and converted into molecular 
vibrations6.  For example, the strongest absorption for water-ice is seen at ~3300 cm-1 (or ~3 µm) which is due to 
excitation of the OH bond stretch.  The amount of energy absorbed by the molecular films is directly related to the 
overall decrease in the amount of light that reaches a detector.  The amount of light that is lost is also proportional to the 
thickness of the film (or amount of molecules present).  The simplest example of this is found in Beer’s law: 
 
   I/I0 = e-εbc           Eqn. 1 
 
Where ‘I’ is the detected intensity ‘I0’ is original intensity, ‘ε’ is a molar absorbtivity (absorption coefficient) and ‘b’ is 
the thickness of the sample, and ‘c’ is the concentration (or density) of the sample.  Similarly, the amount of signal lost 
in a cold IR spectrometer can be related to the amount of contaminant film on the optics. 
 
Calculations can be used to predict the effects of contaminant films on IR spectrometers and may also be used to 
determine what type of contamination is causing degradation in a spectrometer.  Similar types of calculations have been 
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discussed before in other papers4,5.  A computer program that calculates the optical properties of films of various 
thicknesses is CALCRT1,2, a Fortran program which uses n and k values to determine reflectance and transmittance 
spectra for contaminant films on optical surfaces.  This program has been a useful tool not only to determine acceptable 
contaminant levels for contaminantion control plans, but has also been used to identify the cause for signal loss.  These 
program has been useful for IR instruments at SDL including SABER (Sounding of the Atmosphere using Broadband 
Emission Spectroscopy)7and others.  
 
In this paper, the applications of the CALCRT tool will be investigated for identifying absorption bands of common 
contaminants, calculating the effect of a contaminant film in a specified bandpass region, and discussing the possibility 
for using this program to determine effects outside of the IR region.  The potential for the CALCRT tool to predict 
changes in emissivity due to contaminant films will also be discussed.   
 

2.  RESULTS/ DISCUSSION 
 
2.1 Background on CALCRT 
The program CALCRT 1-3  (CALCulations of Reflectance and Transmittance) is a Fortran program that calculates the 
spectral transmittance and reflectance of a thin film on a specified substrate in two different manners:  1) as a function 
of wavelength for a specified thickness of “contaminant” film, or 2) as a function of film thickness for a specified 
incoming wavelength.  Multiple internal reflections are considered.  This program assumes a uniform film on the 
surface, no BRDF effects are considered.   
 
The optical constants of the film (n and k values as a function of wavenumber) must be supplied to the program, as well 
as the optical constants for substrates not calculated by the program.  Other data that must be supplied are the thickness 
of the substrate, film, and the incident angle of the beam.   By using the optical constants (n and k values) as well as 
allowing for different incident beam angles, CALCRT calculates individual results for both types of polarization (s and 
p).  This feature is useful to determine how thin film contaminants will affect incident polarized beams.  While 
CALCRT is capable of calculating reflectance and transmittance spectra at various incident beam angles, unless 
otherwise noted the incident angle of the beam in calculations used in this paper was 0° (or normal incidence).  At 
normal incidence there is not distinction between s and p polarized light.  
 
A “library” of n and k values are supplied with the CALCRT program. The n and k values for the CALCRT “library” 
were obtained experimentally from contaminants of real outgassing products as well as common gaseous contaminants 
such as water or CO2 (for example in References 1-3,8).  Materials were heated to ~125°C and the outgassing products 
condensed on the test sample to obtain the n and k values.  The library states what material is outgassing to identify the 
n and k values (for example RTV-560).   It should be remembered that the supplied optical constants are for the 
contaminants produced from the outgassing of the specified material and do not necessarily represent the material itself.  
However, a reflectance spectrum generated from the n and k values can be used to identify what types of molecules the 
n and k data represent (such as generic hydrocarbon or ether linkages).  It should be noted that additional n and k values 
were obtained from other sources9,10,11 and used in the CALCRT program to expand the results to different substrates 
and wavenumber regions than those available in the CALCRT n and k library.  These results are discussed in the 
following section. 
 
An example of the CALCRT output (reflection as a function of wavenumber) is shown in Figure 1 for a 1000nm film of 
CO2 on a gold substrate.  A bare gold substrate reflectance output is shown for comparison.  (Note:  Gold substrate is 
opaque and CALCRT simulations accordingly showed zero transmittance of the incoming beam.)  The n & k values for 
the film were determined experimentally8 for the mid IR region of ~700-4000 cm-1 (~3-14µm wavelength).  The gold n 
and k values were derived from Palik9.   
 
A decrease in reflectance is seen as absorption peaks specific to CO2.  These peaks are due to the absorption of the beam 
at wavelengths that correspond to the molecular vibrational frequencies of CO2.  As can be seen in Figure 1, a 1000nm 
CO2 film only absorbs appreciably at  ~2340 cm-1 (due to the O=C=O stretching frequencies).  An increase in these 
absorption peaks (corresponding to a decrease in the reflected signal) is seen at these specific wavelengths as the 
amount of CO2 film is increased on the surface.    
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Figure 1:  CALCRT calculated reflectance spectra from bare gold surface 
and a gold substrate with 1000nm CO2 film. 

 
2.2 Calculated degradation of signal intensity due to contaminant films 
When appropriate n and k values for a desired film and substrate are chosen, CALCRT generated spectra can be used to 
calculate expected degradation of the signal due to the presence of the contaminant.  The “Signal Performance” of a 
surface (or mirror) is defined here as the ratio of the degraded signal response to the optimum signal response.  The 
signal response is determined by integrating a combination of the reflectance (which is generated by CALCRT), the 
relative spectral response (RSR) curve for the spectrometer, and a blackbody curve for the temperature of interest.  For 
the degraded signal the reflectance would be reflectance of the surface plus the contaminant film.  For the  “control” or 
optimum signal response a reflectance spectrum of the uncontaminated substrate is used.  This is demonstrated below in 
Equation 2 for assuming the reflecting substrate is a gold.   
 
 

    
   Eqn. 2 

 
                                       

Rau+film  =  CALCRT Calculated Reflectance from water film on gold  
RBare Au =  CALCRT Calculated Reflectance from bare gold  
RSR     =  Relative spectral response (experimentally measured for DXPS) 
BBT     =  Blackbody emission spectrum at temperature T (°K) 

 
The range of the bandpass region (related to the RSR) can determine to what degree a contaminant film affects a signal.  
Figure 2 shows the CALCRT calculated reflectance for a 1000 nm film of water-ice on a gold substrate (the substrate is 
assumed to be at ~80 K).  The heavy and dotted lines show the average signal performance for two different bandpass 
regions with the 1000 nm of water-ice on the gold substrate.  These results were calculated using Equation 2 with 300 K 
blackbody and a square wave over the region of interest for the RSR.   
 
The average signal performance for a bandpass region limited to the range of 3100-3400 cm-1 (heavy line in Figure 2) 
reduced to ~0.1 (or 10% of the original signal performance) when 1000 nm of ice is absorbed on the substrate.  It is 
obvious that this region will be greatly affected by an adsorbed film of ice because it directly overlaps a large portion of 
the ~3300 cm-1 absorption band for the –OH stretch.  In contrast the larger bandpass region of 2100-3400 cm-1 still has 
an average signal performance of ~0.85 (or 85% of the original signal).  While this region still overlaps the large 
absorption peak due to the OH stretch, the region does not see as much degradation since the affects of the -OH 
absorption band are reduced due to the contribution of regions that do not see as much absorption.  As a direct result of 
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these calculations, it is obvious that a spectrometer with a smaller bandpass region which is directly over an absorption 
band will have to have much more stringent contamination control requirements than one with a broader bandpass 
region.   

Figure 2:  CALCRT calculated reflectance for 1000nm water on gold and the signal 
performance for a bandpass region of 2100-3400 cm-1 compared to 3100-3400cm-1. 

  
The signal performance of specific bandpass regions can also be followed as a function of film thickness as shown in 
Figure 3.  This type of graph is a useful reference when creating a contamination budget for a spectrometer.  The 
degradation in signal can be followed and compared for each bandpass region used by a spectrometer and the 
contamination budget can be designed to accommodate the most sensitive region.   Figure 3 followed the two regions 
shown above in Figure 2 as a function of film thickness.  

  
Figure 3:  The signal performance as a function of increasing water-ice 
thickness for the 3100-3400 cm-1 and the 2100-3400 cm-1 regions. 
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Again, each point on the curve was calculated using Equation 2 and a 300 K blackbody.  At 20 nm of water-ice 
contamination there is little degradation in either region, but by 100 nm there is ~5% loss in the 3100-3400 cm-1 region 
signal.  After 100 nm this signal begins to drop dramatically.  By 1000 nm the signal performances is reduced to 10% of 
for the 3100-3400 cm-1 region and 85% for the 2100-3400 cm-1 region.   
 
It should be noted that these calculations are only assuming one reflecting surface.   Actual spectrometers will contain 
more than one mirror surface as well as beam splitters, windows, and a detector.  These other surface must be 
considered in combination when developing a contamination budget. 
 
2.3 Applications to the Visible and UV regions  
In theory, the CALCRT calculations can be applied to other regions of the electro-magnetic spectrum as long as 
accurate n and k values can be found.  Species such as H2O-ice hold an interest for many different groups, and 
“expanded” regions of n and k values are available11.  However, previous papers have discussed the importance of 
accurate n and k values and discussed how deviation of theoretical results from experimental ones may be due to this 
inaccuracy4.  Consequently, the CALCRT results using the “expanded region” of n and k values for H2O-ice from 
Warren et al. in Reference 11 are compared to the result was using the CALCRT supplied n and k values for H2O-ice.  
This comparison is shown in Figure 4 for a 1000 nm H2O-ice film on a gold substrate. 
 

 
Figure 4:  will be the absorption spectrum of 1000 nm water on gold 
substrate using CALCRT n and k values (solid line) and n and k values 
from Warren et al. in Ref. 11 (dashed line). 

 
The n and k values for the gold substrate was derived from two different references9,10.  As can be seen in Figure 4, 
there is fairly good agreement between the reflectance spectra calculated from the two different n and k sets.  While the 
“expanded” n and k values do not have the resolution of the CALCRT values, it can be seen that the results still follow 
the same trend and correlate well within the mid-IR region.  From this calculation it can be concluded that a 1000 nm 
film of water is not predicted to have an appreciable absorption in the visible-ultraviolet region of ~12500-50000 cm-1 
(0.01 to 0.8 µm), excluding the Far-UV region, which could be a useful result for spectrometers that are investigating 
the Visible-UV region.   This data indicates interesting potential for application of this type of calculations to the 
visible, UV, and other regions to determine contaminant effects on spectrometers.  Other sources of contaminant n and k 
data have been identified and further investigation to the applications in the Visible-UV region are underway. 
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2.4 Calculated Changes in Emissivity  
It has been known that contaminant films can affect the emissivity of a surface.  A change in emissivity of an optic or 
thermal control surface that is kept cold by spacecraft cryo-coolers may result in an excessive heat load on the coolers.  
It would be helpful to be able to calculate the effects of contaminant films on thermal performance.  Spectral 
hemispherical emittance can be determined from spectral hemispherical reflectance as shown below in Equation 3 
(Kirchhoff’s law): 
 
  εh = 1 – Rh       Eqn. 3 
 
Where εh is spectral emittance and Rh is spectral hemispherical reflectance.  However, CALCRT calculates directional 
reflectance not hemispherical reflectance.  To determine the spectral hemispherical reflectance, reflectance spectra were 
calculated at incident angles from 0° (normal incidence) to 80° (near glancing incidence) at 10° intervals.  (The s and p 
polarized results are averaged to give the “unpolarized” result.)  The spectral hemispherical emittance is then found by 
integrating at a specific wavelength over all of the angles12,13  as shown in Equation 4.  
 

Eqn. 4 
 
 
In Equation 4 the incident angle of the beam is θ, and RD is the directional reflectance (supplied by the CALCRT 
program).  This calculation assumes that the reflectance is independent of the azimuthal angle φ, which is a reasonable 
assumption when assuming a flat, specular homogeneous substrate and film.  Equation 4 produces a series of spectra as 
a function of wavelength at each incident angle.   
 
While the spectral emittance is an interesting result, the total hemispherical emissivity is required for calculating 
changes in heat load on cryo-coolers.  Total hemispherical emissivity is the ratio of the emissive power of the substrate 
in question to the emissive power of an ideal blackbody at the same temperature.  
 

    
  Eqn. 5 

 
 
Where P(λ,T) is the Planck’s Function for a given wavelength and temperature.  Once the spectral hemispherical 
emissivity is calculated (Equation 4), it can be inserted into Equation 5 at the appropriate blackbody temperature to give 
the total hemispherical emissivity. 
 
Preliminary data has been calculated for water-ice film on a gold substrate using a 220 K blackbody.  The thickness of 
the ice film was varied from bare gold substrate (no water) to 1000nm of H2O-ice.  Results of these calculations are 
shown in Figure 5.  Each data point in Figure 5 represents the reflectance spectra for a specific thickness of H2O -ice 
film integrated over all angles (Equation 4) followed by integration over all wavelengths (Equation 5).    
 
One critical point to note with emissivity calculations is what temperature of blackbody was used for the calculations.  
The data shown in Figure 5 was calculated for a 220 K blackbody.  The maximum intensity of a 220 K blackbody curve 
is at ~760 cm-1.  In Figure 5 the solid squares represent data calculated with the CALCRT limited range of n and k data 
(700-4000 cm-1), which means that a good portion of the blackbody intensity is outside the range of this calculation.  
The open squares, however, are data calculated with a broader region (~0.2 to 100000cm-1), which covers the entire 
range of the blackbody intensity. 
 
The emissivities calculated with these two different ranges of n and k values are slightly different, as can be seen in 
Figure 5.  This difference is attributed to the fact that the n and k values limited to the 700-4000 cm-1 range do not 
account for the entire blackbody curve, as mentioned above, and therefore do not accurately calculate the emissivity of 
this ideal system.  The broader region n and k values show the lower emissivity expected for an ideal surface.  This 
conclusion is most easily demonstrated by a comparison of the emissivities calculated for bare gold using the two 
different n and k regions. 
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Figure 5:  Total hemispherical emissivity calculations (Eqn. 5) for 
various thickness of water film on gold assuming a 220 K 
blackbody.  The solid squares are results using CALCRT n and k 
values while the open squares are for larger wavenumber n and k 
values (Warren et al. in Ref 11). 

 
 
The calculated emissivity for the bare gold substrate with a 220 K blackbody and using the CALCRT n and k values 
was 0.029.  In contrast, the emissivity calculated with the longer range of n and k values10 for the bare gold substrate 
was 0.015.  While the emissivity of gold is often reported to be 0.02, it should be remembered that the experiment is 
limited by the “flatness” or specularity of the gold substrate.  For example, the emissivity of vapor deposited gold is 
reported to be 0.031+/- 0.002 at 224 K14.  In comparison, the emissivity determined experimentally for electro-deposited 
gold is reported to be much higher (0.038 at 197 K)14.  The increased emissivity of the electro-deposited gold is due to 
the added scattering factor of the relatively “rougher” electrodeposited substrate versus a vapor deposited substrate.  It is 
likely that the emissivity calculated here using the longer range n and k values is lower than experimental values 
because it is calculating a more “ideal” surface than cannot be easily be made.  
 
 A film of ice on a surface increases the emissivity of that surface (Figure 5).   A relatively large amount (250µm) of ice 
on the surface is calculated to increase the emissivity of that surface to 0.936 (not shown), which is approaching the 
reported emissivity of smooth ice at 0.97.  The two extremes of the emissivity calculations, gold with no ice film and 
gold with a large (250µm) ice film, are very close to their reported experimental values.  The conclusion can be made 
that these emissivity calculations for a thin film of ice of the gold substrate is a good estimate of the actual change in 
emissivity that might be seen in a real spectrometer due to ice contaminant. 
 
As previously mentioned, an increased emissivity of surfaces in cryo-systems should result in a greater heat load on the 
cryo-coolers.  Further analyses are still under investigation to adequately interpret this data and determine if the 
theoretical results can be verified by the experimental observations.  Modeled emissivities can be a useful tool for 
predicting changes is emissivity due to contaminant films, even though the calculations may not be accurate when 
calculating exact emissivities of “real life” surfaces. 
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3. CONCLUSIONS 
 
The spectral degradation due to contaminant films can be determined using simple specular reflectance calculations.  
Care must be taken that the proper blackbody temperature and relative spectral response of the spectrometer are 
considered as well.  Also, the calculations are dependant on the accuracy of the optical constants that are used.  A 
limitation to usefulness of these calculations is the availability of accurate n and k values for contaminants of interest.  
Applications to the visible and UV regions are limited by the availability of optical constants in those regions as well.  
The CALCRT simulations may be applicable to calculating changes is emissivity.  Data is promising and the general 
trend of the results is accurate, but more comparisons to experimental results still needs to be achieved to verify the 
precision of the calculations. 
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