1,565 research outputs found
Quantum annealing for systems of polynomial equations
Numerous scientific and engineering applications require numerically solving
systems of equations. Classically solving a general set of polynomial equations
requires iterative solvers, while linear equations may be solved either by
direct matrix inversion or iteratively with judicious preconditioning. However,
the convergence of iterative algorithms is highly variable and depends, in
part, on the condition number. We present a direct method for solving general
systems of polynomial equations based on quantum annealing, and we validate
this method using a system of second-order polynomial equations solved on a
commercially available quantum annealer. We then demonstrate applications for
linear regression, and discuss in more detail the scaling behavior for general
systems of linear equations with respect to problem size, condition number, and
search precision. Finally, we define an iterative annealing process and
demonstrate its efficacy in solving a linear system to a tolerance of
.Comment: 11 pages, 4 figures. Added example for a system of quadratic
equations. Supporting code is available at
https://github.com/cchang5/quantum_poly_solver . This is a post-peer-review,
pre-copyedit version of an article published in Scientific Reports. The final
authenticated version is available online at:
https://www.nature.com/articles/s41598-019-46729-
Cellulose Nanoparticles are a Biodegradable Photoacoustic Contrast Agent for Use in Living Mice.
Molecular imaging with photoacoustic ultrasound is an emerging field that combines the spatial and temporal resolution of ultrasound with the contrast of optical imaging. However, there are few imaging agents that offer both high signal intensity and biodegradation into small molecules. Here we describe a cellulose-based nanoparticle with peak photoacoustic signal at 700 nm and an in vitro limit of detection of 6 pM (0.02 mg/mL). Doses down to 0.35 nM (1.2 mg/mL) were used to image mouse models of ovarian cancer. Most importantly, the nanoparticles were shown to biodegrade in the presence of cellulase both through a glucose assay and electron microscopy
A geometric model of a V-slit Sun sensor correcting for spacecraft wobble
A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere
Information entropy as a measure of the quality of a nuclear density distribution
The information entropy of a nuclear density distribution is calculated for a
number of nuclei. Various phenomenological models for the density distribution
using different geometry are employed. Nuclear densities calculated within
various microscopic mean field approaches are also employed. It turns out that
the entropy increases on going from crude phenomenological models to more
sophisticated (microscopic) ones. It is concluded that the larger the
information entropy, the better the quality of the nuclear density
distribution. An alternative approach is also examined: the net information
content i.e. the sum of information entropies in position and momentum space
. It is indicated that is a maximum, when the best
fit to experimental data of the density and momentum distributions is attained.Comment: 12 pages, LaTex, no figures, Int. J. of Mod. Phys. E in pres
Confronting mitigation deterrence in low-carbon scenarios
Carbon dioxide removal (CDR) features heavily in low-carbon scenarios, where it often substitutes for emission reductions in both the near-term and long-term, enabling temperature targets to be met at lower cost. There are major concerns around the scale of CDR deployment in many low-carbon scenarios, and the risk that anticipated future CDR could dilute incentives to reduce emissions now, a phenomenon known as mitigation deterrence. Here we conduct an in-depth analysis into the relationship between emissions reduction and emissions removal in a global integrated assessment model. We explore the impact of CDR on low-carbon scenarios, illustrating how the pathway for the 2020s is highly sensitive to assumptions around CDR availability. Using stochastic optimisation, we demonstrate that accounting for uncertainty in future CDR deployment provides a strong rationale to increase rates of mitigation in the 2020s. A 20% chance of CDR deployment failure requires additional emissions reduction in 2030 of 3–17 GtCO2. Finally, we introduce new scenarios which demonstrate the risks of mitigation deterrence and the benefits of formally separating CDR and emissions reduction as climate strategies. Continual mitigation deterrence across the time-horizon leads to the temperature goals being breached by 0.2–0.3 °C. If CDR is treated as additional to emissions reduction, up to an additional 700–800 GtCO2 can be removed from the atmosphere by 2100, reducing end-of-century warming by up to 0.5 °C. This could put sub-1.5 °C targets within reach but requires that CDR is additional to, rather than replaces, emission reductions
Roles of proton-neutron interactions in alpha-like four-nucleon correlations
An extended pairing plus QQ force model, which has been shown to successfully
explain the nuclear binding energy and related quantities such as the symmetry
energy, is applied to study the alpha-like four-nucleon correlations in
1f_{7/2} shell nuclei.
The double difference of binding energies, which displays a characteristic
behavior at , is interpreted in terms of the alpha-like
correlations. Important roles of proton-neutron interactions forming the
alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.
Cardiovascular response to acute cold stress in non-obese and obese healthy adults
Background: Obesity is a global epidemic with important health care and financial implications. The cold pressor test (CPT) which is considered to be a sympathy-excitatory manoeuvre is a simple, noninvasive and validated test. The objective of this study was to assess and compare the cardiovascular response to cold pressor test in non-obese and obese healthy adults.Methods: The study included 400 subjects, of which the study group included 200 adults who had body mass index (BMI) of more than 30 Kg/m2 and 200 non-obese adults were enrolled as controls with BMI less than 25 kg/m2. The study was conducted for a period of two months. CPT was used to assess cardiac response to acute cold exposure in the present study. Baseline systolic and diastolic blood pressure recording was done using mercury sphygmomanometer during resting condition and following cold pressor test. The results were expressed as mean, standard deviation, and data were analyzed using ANOVA test. P < 0.05 was considered statistically significant.Results: The mean change in systolic blood pressure before and after cold pressor test (CPT) was less in obese (7.12 ± 5.28) as compared to non-obese subjects (10.38 ±6.35). This was statistically significant which indicates impaired sympathetic function in otherwise healthy obese.Conclusion: The study concluded that blood pressure response to cold pressor test was reduced in obese compared to non-obese subjects indicating reduced sympathetic activity in healthy obese adults.Keywords: cold pressor test, systolic blood pressure, diastolic blood pressure, body mass inde
- …