6 research outputs found

    α7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis

    No full text
    Controlled clinical trials of nicotine transdermal patch for treatment of ulcerative colitis have been shown to improve histological and global clinical scores of colitis. Here we report that nicotine (1 μM) suppresses in vitro hyperexcitability of colonic dorsal root ganglia (DRG) (L1–L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation. Nicotine gradually reduced regenerative multiple-spike action potentials in colitis mice to a single action potential. Nicotine's effect on hyperexcitability of inflamed neurons was blocked in the presence of an α7-nicotinic acetylcholine receptor (nAChR) antagonist, methyllicaconitine, while choline, the α7-nAChR agonist, induced a similar effect to that of nicotine. Consistent with these findings, nicotine failed to suppress hyperexcitability in colonic DRG neurons from DSS-treated α7 knockout mice. Furthermore, colonic DRG neurons from DSS-treated α7 knockout mice were characterized by lower rheobase (10 ± 5 vs. 77 ± 13 pA, respectively) and current threshold (28 ± 4 vs. 103 ± 8 pA, respectively) levels than DSS-treated C57BL/J6 mice. An interesting observation of this study is that 8 of 12 colonic DRG (L1–L2) neurons from control α7 knockout mice exhibited multiple-spike action potential firing while no wild-type neurons did. Overall, our findings suggest that nicotine at low 1 μM concentration suppresses in vitro hyperexcitability of inflamed colonic DRG neurons in a mouse model of acute colonic inflammation via activation of α7-nAChRs
    corecore