896 research outputs found

    Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials

    Full text link
    Decades ago, the losses of glasses in the near infrared (near-IR) were investigated in views of developments for optical telecommunications. Today, properties in the mid-infrared (mid-IR) are of interest for molecular spectroscopy applications. In particular, high-sensitivity spectroscopic techniques based on high-finesse mid-IR cavities hold high promise for medical applications. Due to exceptional purity and low losses, whispering gallery mode microresonators based on polished alkaline earth metal fluoride crystals (i.e the XF2\mathrm{XF_2} family, where X == Ca, Mg, Ba, Sr,...) have attained ultra-high quality (Q) factor resonances (Q>>108^{8}) in the near-IR and visible spectral ranges. Here we report for the first time ultra-high Q factors in the mid-IR using crystalline microresonators. Using an uncoated chalcogenide (ChG) tapered fiber, light from a continuous wave quantum cascade laser (QCL) is efficiently coupled to several crystalline microresonators at 4.4 μ\mum wavelength. We measure the optical Q factor of fluoride crystals in the mid-IR using cavity ringdown technique. We observe that MgF2\mathrm{MgF_2} microresonators feature quality factors that are very close to the fundamental absorption limit, as caused by the crystal's multiphonon absorption (Q∼\sim107^{7}), in contrast to near-IR measurements far away from these fundamental limits. Due to lower multiphonon absorption in BaF2\mathrm{BaF_2} and SrF2\mathrm{SrF_2}, we show that ultra-high quality factors of Q ⩾\geqslant 1.4 ×108\times 10^{8} can be reached at 4.4 μ\mum. This corresponds to an optical finesse of F>\mathcal{F}>4⋅\cdot 104^{4}, the highest value achieved for any type of mid-IR resonator to date, and a more than 10-fold improvement over the state-of-the-art. Such compact ultra-high Q crystalline microresonators provide a route for narrow linewidth frequency-stabilized QCL or mid-IR Kerr comb generation.Comment: C. Lecaplain and C. Javerzac-Galy contributed equally to this wor

    Long Term Precipitation Chemistry and Wet Deposition in a Remote Dry Savanna Site in Africa (Niger)

    Get PDF
    A long-term measurement of precipitation chemistry has been carried-out in a rural area of Banizoumbou, in the Sahel (Niger), representative of the african semi-arid savanna ecosystem. A total of 305 rainfall samples, representing 90% of the total annual rainfall, were collected with an automatic wet-only rain sampler from June 1994 to September 2005. Using ionic chromatography, pH major inorganic and organic ions were analyzed. Rainwater chemistry at the site is controlled by soil dust emissions associated to a strong terrigeneous contribution represented by SO42¿, Ca2+, Carbonates, K+ and Mg2+. Calcium and carbonates represent about 40% of the total ionic charge of precipitation. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) NO3¿ and NH4+, concentrations of 11.6 and 18.1 µeq.l-1, respectively. This is thesignature of ammonia sources related to animals and NOx emissions from savannas soils rain-induced, at the beginning of the rainy season. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 µeq.l-1 and reflects the marine signature from the monsoon humid air masses coming from the ocean. The mean pH value, calculated from the VWM of H+, is 5.64. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8 µeq.l-1 and 5.2 µeq.l-1 of formate and acetate were found, respectively. The analysis of monthly Black Carbon emissions and FAPAR values show that both biogenic emission from vegetation and biomass burning sources could explain the organic acidity content of the precipitation. The interannual variability of the VWM concentrations around the mean (1994¿2005) presents fluctuations between ±5% and ±30% mainly attributed to the variations of sources strength associated with rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is 60.1 mmol.m-2.yr-1 and fluctuates around ±25%. Finally, Banizoumbou measurements, are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loadings presents a strong negative gradient from the dry savanna to the forest (143.7, 100.2 to 86.6 µeq.l¿1), associated with the gradient of terrigeneous compounds sources. The wet deposition fluxes present an opposite gradient, with 60.0 mmol.m-2.yr-1 in Banizoumbou, 108.6 mmol.m-2.yr¿1 in Lamto and 162.9 mmol.m-2.yr-1 in Zoétélé, controlled by the rainfall gradient along the ecosystems transect.JRC.DDG.H.3-Global environement monitorin

    A note on reporting of reservoir 14C disequilibria and age offsets

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Radiocarbon 58 (2016): 205-211, doi:10.1017/RDC.2015.22.Reservoir age offsets are widely used to correct marine and speleothem radiocarbon age measurements for various calibration purposes. They also serve as a powerful tracer for carbon cycle dynamics. However, a clear terminology regarding reservoir age offsets is lacking, sometimes leading to miscalculations. This note seeks to provide consistent conventions for reporting reservoir 14C disequilibria useful to a broad range of environmental sciences. This contribution introduces the F14R and δ14R metrics to express the relative 14C disequilibrium between two contemporaneous reservoirs and the R metric as the associated reservoir age offset.G.S. acknowledges the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution with funding provided by the National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE-1239667). S.R.B acknowledges Dean Minghua Zhang and Provost Dennis Assanis of Stony Brook University for financial support

    Crystal structure of LaTiO_3.41 under pressure

    Full text link
    The crystal structure of the layered, perovskite-related LaTiO_3.41 (La_5Ti_5O_{17+\delta}) has been studied by synchrotron powder x-ray diffraction under hydrostatic pressure up to 27 GPa (T = 295 K). The ambient-pressure phase was found to remain stable up to 18 GPa. A sluggish, but reversible phase transition occurs in the range 18--24 GPa. The structural changes of the low-pressure phase are characterized by a pronounced anisotropy in the axis compressibilities, which are at a ratio of approximately 1:2:3 for the a, b, and c axes. Possible effects of pressure on the electronic properties of LaTiO_3.41 are discussed.Comment: 5 pages, 6 figure

    Dry deposition of nitrogen compounds (NO 2 , HNO 3 , NH 3 ), sulfur dioxide and ozone in west and central African ecosystems using the inferential method

    Get PDF
    Abstract. This work is part of the IDAF program (IGAC-DEBITS-AFRICA) and is based on the long-term monitoring of gas concentrations (1998–2007) established at seven remote sites representative of major African ecosystems. Dry deposition fluxes were estimated by the inferential method using on the one hand surface measurements of gas concentrations (NO2, HNO3, NH3, SO2 and O3) and on the other hand modeled exchange rates. Dry deposition velocities (Vd) were calculated using the big-leaf model of Zhang et al. (2003b). The bidirectional approach is used for NH3 surface–atmosphere exchange (Zhang et al., 2010). Surface and meteorological conditions specific to IDAF sites have been used in the models of deposition. The seasonal and annual mean variations of gaseous dry deposition fluxes (NO2, HNO3, NH3, O3 and SO2) are analyzed. Along the latitudinal transect of ecosystems, the annual mean dry deposition fluxes of nitrogen compounds range from −0.4 to −0.8 kg N ha−1 yr−1 for NO2, from −0.7 to −1.0 kg N ha−1 yr−1 for HNO3 and from −0.7 to −8.3 kg N ha−1 yr−1 for NH3 over the study period (1998–2007). The total nitrogen dry deposition flux (NO2+HNO3+NH3) is more important in forests (−10 kg N ha−1 yr−1) than in wet and dry savannas (−1.6 to −3.9 kg N ha−1 yr−1). The annual mean dry deposition fluxes of ozone range between −11 and −19 kg ha−1 yr−1 in dry and wet savannas, and −11 and −13 kg ha−1 yr−1 in forests. Lowest O3 dry deposition fluxes in forests are correlated to low measured O3 concentrations, lower by a factor of 2–3, compared to other ecosystems. Along the ecosystem transect, the annual mean of SO2 dry deposition fluxes presents low values and a small variability (−0.5 to −1 kg S ha−1 yr−1). No specific trend in the interannual variability of these gaseous dry deposition fluxes is observed over the study period

    Angular localisation for non circular signals

    Get PDF
    We present in this article an angular location algorithm of non circular sources . We show how to take into account non circularit y of signals in array processing and develop an extension of the MUSIC algorithm . This extension offers, for a relatively simple implementation, performance appreciably superior the classic algorithm . The main improvement linked to the non circularit y concern the resolution, the variance of estimation and the number of localizable sources . These characteristics are illustrated b y simulations .Nous présentons dans cet article un algorithme de localisation angulaire de sources non circulaires. Nous montrons comment prendre en compte la nature non circulaire des signaux en traitement d'antenne et développons une extension de l'algorithme MUSIC. Cette extension offre, pour une mise en oeuvre relativement simple, des performances sensiblement supérieures à l'algorithme classique. Les principaux avantages liés à la non circularité concernent la résolution, la variance d'estimation et le nombre de sources localisables. Ces caractéristiques sont illustrées par des simulations

    How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter

    Get PDF
    Carbon (C) in soils persists on a range of timescales depending on physical, chemical, and biological processes that interact with soil organic matter (SOM) and affect its rate of decomposition. Together these processes determine the age distribution of soil C. Most attempts to measure this age distribution have relied on operationally defined fractions using properties like density, aggregate stability, solubility, or chemical reactivity. Recently, thermal fractionation, which relies on the activation energy needed to combust SOM, has shown promise for separating young from old C by applying increasing heat to decompose SOM. Here, we investigated radiocarbon (C-14) and C-13 of C released during thermal fractionation to link activation energy to the age distribution of C in bulk soil and components previously separated by density and chemical properties. While physically and chemically isolated fractions had very distinct mean C-14 values, they contributed C across the full temperature range during thermal analysis. Thus, each thermal fraction collected during combustion of bulk soil integrates contributions from younger and older C derived from components having different physical and chemical properties but the same activation energy. Bulk soil and all density and chemical fractions released progressively older and more C-13-enriched C with increasing activation energy, indicating that each operationally defined fraction itself was not homogeneous but contained a mix of C with different ages and degrees of microbial processing. Overall, we found that defining the full age distribution of C in bulk soil is best quantified by first separating particulate C prior to thermal fractionation of mineral-associated SOM. For the Podzol analyzed here, thermal fractions confirmed that similar to 95 % of the mineral-associated organic matter (MOM) had a relatively narrow C-14 distribution, while 5 % was very low in C-14 and likely reflected C from the < 2 mm parent shale material in the soil matrix. After first removing particulate C using density or size separation, thermal fractionation can provide a rapid technique to study the age structure of MOM and how it is influenced by different OM-mineral interactions

    Magnetic properties of NaV2O5, a one-dimensional spin 1/2 antiferromagnet with finite chains

    Full text link
    We have performed measurements of the magnetic susceptibility of NaV2_2O5_5 between 2 and 400 K. The high temperature part is typical of spin 1/2 chains with a nearest--neighbour antiferromagnetic exchange integral JJ of 529 K. We develop a model for the susceptibility of a system with finite chains to account for the low temperature part of the data, which cannot be fitted by a standard Curie-Weiss term. These results suggest that the next nearest--neighbour exchange integral J2J_2 in CaV4_4O9_9 should be of the order of 500 K because, like JJ in NaV2_2O5_5, it corresponds to corner sharing VO5_5 square pyramids.Comment: An early version of the manuscript was mistakenly submitted. Although relatively minor, the changes concern the list of authors, the main text, the references and the figure captions. 10 pages of latex, 2 figure

    Les hypovanadates M

    Full text link
    • …
    corecore