348 research outputs found

    Evolution of the Radial Size and Expansion of Coronal Mass Ejections Investigated by Combining Remote and In-Situ Observations

    Full text link
    A fundamental property of coronal mass ejections (CMEs) is their radial expansion, which determines the increase in the CME radial size and the decrease in the CME magnetic field strength as the CME propagates. CME radial expansion can be investigated either by using remote observations or by in-situ measurements based on multiple spacecraft in radial conjunction. However, there have been only few case studies combining both remote and in-situ observations. It is therefore unknown if the radial expansion estimated remotely in the corona is consistent with that estimated locally in the heliosphere. To address this question, we first select 22 CME events between the years 2010 and 2013, which were well observed by coronagraphs and by two or three spacecraft in radial conjunction. We use the graduated cylindrical shell model to estimate the radial size, radial expansion speed, and a measure of the dimensionless expansion parameter of CMEs in the corona. The same parameters and two additional measures of the radial-size increase and magnetic-field-strength decrease with heliocentric distance of CMEs based on in-situ measurements are also calculated. For most of the events, the CME radial size estimated by remote observations is inconsistent with the in-situ estimates. We further statistically analyze the correlations of these expansion parameters estimated using remote and in-situ observations, and discuss the potential reasons for the inconsistencies and their implications for the CME space weather forecasting.Comment: Accepted by Ap

    Investigating the Magnetic Structure of Interplanetary Coronal Mass Ejections using Simultaneous Multi-Spacecraft In situ Measurements

    Full text link
    In situ measurements from spacecraft typically provide a time series at a single location through coronal mass ejections (CMEs) and they have been one of the main methods to investigate CMEs. CME properties derived from these in situ measurements are affected by temporal changes that occur as the CME passes over the spacecraft, such as radial expansion and ageing, as well as spatial variations within a CME. This study uses multi-spacecraft measurements of the same CME at close separations to investigate both the spatial variability (how different a CME profile is when probed by two spacecraft close to each other) and the so-called ageing effect (the effect of the time evolution on in situ properties). We compile a database of 19 events from the past four decades measured by two spacecraft with a radial separation <0.2 au and an angular separation <10{\deg}. We find that the average magnetic field strength measured by the two spacecraft differs by 18% of the typical average value, which highlights non-negligible spatial or temporal variations. For one particular event, measurements taken by the two spacecraft allow us to quantify and significantly reduce the ageing effect to estimate the asymmetry of the magnetic field strength profile. This study reveals that single-spacecraft time series near 1 au can be strongly affected by ageing and that correcting for self-similar expansion does not capture the whole ageing effect.Comment: Accepted for publication at ApJ. 18 pages, 6 figures, 2 table

    On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 AU

    Full text link
    Measurements of coronal mass ejections (CMEs) by multiple spacecraft at small radial separations but larger longitudinal separations is one of the ways to learn about the three-dimensional structure of CMEs. Here, we take advantage of the orbit of the Wind spacecraft that ventured to distances of up to 0.012 astronomical units (au) from the Sun-Earth line during the years 2000 to 2002. Combined with measurements from ACE, which is in a tight halo orbit around L1, the multipoint measurements allow us to investigate how the magnetic field inside magnetic ejecta (MEs) changes on scales of 0.005 - 0.012 au. We identify 21 CMEs measured by these two spacecraft for longitudinal separations of 0.007 au or more. We find that the time-shifted correlation between 30-minute averages of the non-radial magnetic field components measured at the two spacecraft is systematically above 0.97 when the separation is 0.008 au or less, but is on average 0.89 for greater separations. Overall, these newly analyzed measurements, combined with 14 additional ones when the spacecraft separation is smaller, point towards a scale length of longitudinal magnetic coherence inside MEs of 0.25 - 0.35 au for the magnitude of the magnetic field but 0.06 - 0.12 au for the magnetic field components. This finding raises questions about the very nature of MEs. It also highlights the need for additional "mesoscale" multi-point measurements of CMEs with longitudinal separations of 0.01 - 0.2 au.Comment: Published in ApJL, 6 page

    Effect of an edge at cup rim on contact stress during micro-separation in ceramic-on-ceramic hip joints

    Get PDF
    Alumina ceramic total hip joint bearings have shown superior wear properties. The joint bearing may undergo adverse conditions such as micro-separation causing head contact on the cup rim. As a transition, an edge is formed between the cup bearing and the rim. The aim of this study was to predict the effect of the edge on contact stresses in order to better understand the mechanisms of wear. A finite element contact model was developed under the conditions of the head displacements 0.5 2 mm and vertical loads 0.5 3kN. The edge contact produced the most severe stresses capable of causing elevated wear and damage to ceramic bearings. The study shows that the bearing design should be considered in association with clinical conditions to eliminate severe stress

    Unmet healthcare needs in adults with childhood-onset neurodisabilities: a protocol for a systematic review

    Get PDF
    Data availability: No data are associated with this article.Copyright . Background: Many adults with childhood-onset neurodisabilities, such as those with intellectual disability or cerebral palsy, report difficulties accessing the healthcare that they require when they are no longer eligible for paediatric services. Compared to the general population, this population is at greater risk of developing many ageing-related diseases and has higher rates of preventable deaths and premature mortality. Addressing unmet healthcare needs is essential to ensuring equitable access in a quality healthcare system. The aim of this systematic review is to synthesise the current available evidence related to unmet healthcare needs in adults with a range of childhood-onset neurodisabilities. Methods: A systematic review of quantitative research studies of adults with a range of diagnoses that fall under the neurodisability umbrella and outcomes related to unmet healthcare needs will be undertaken. The Conducting Systematic Reviews and Meta-Analyses of Observational Studies (COSMOS-E) guidelines will be adhered to. Searches of key databases will be undertaken, and a two-phase screening process carried out by pairs of independent reviewers to select studies that meet the inclusion criteria. Data will be extracted using a purposefully designed form. Risk of bias will be assessed using the Joanna Briggs Institute Critical Appraisal Tools. If it is possible to pool prevalence data, a meta-analysis will be undertaken. Where pooling of data is not possible, a structured synthesis approach will be used, and results will be presented in tables and summarised narratively. Conclusions: In recent years, there has been increased emphasis placed on promoting positive ageing and improving the healthcare experiences throughout the lifespan for people with neurodisabilities. Findings of this systematic review can inform decision-making related to healthcare for this vulnerable population and has the potential to contribute to reducing preventable deaths and premature mortality and promoting positive and healthy ageing for this group.Elaine Meehan was supported by funding from the Health Research Institute, University of Limerick. Elaine Meehan was also part supported by the Health Research Board (Ireland) and the HSC Public Health Agency (Grant number CBES-2018-001) through Evidence Synthesis Ireland/Cochrane Ireland

    Lewy Body Dementia Association\u27s Research Centers of Excellence Program: Inaugural Meeting Proceedings

    Get PDF
    The first Lewy Body Dementia Association (LBDA) Research Centers of Excellence (RCOE) Investigator\u27s meeting was held on December 14, 2017, in New Orleans. The program was established to increase patient access to clinical experts on Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLB) and Parkinson\u27s disease dementia (PDD), and to create a clinical trials-ready network. Four working groups (WG) were created to pursue the LBDA RCOE aims: (1) increase access to high-quality clinical care, (2) increase access to support for people living with LBD and their caregivers, (3) increase knowledge of LBD among medical and allied (or other) professionals, and (4) create infrastructure for a clinical trials-ready network as well as resources to advance the study of new therapeutics

    Informant-reported cognitive symptoms that predict amnestic mild cognitive impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differentiating amnestic mild cognitive impairment (aMCI) from normal cognition is difficult in clinical settings. Self-reported and informant-reported memory complaints occur often in both clinical groups, which then necessitates the use of a comprehensive neuropsychological examination to make a differential diagnosis. However, the ability to identify cognitive symptoms that are predictive of aMCI through informant-based information may provide some clinical utility in accurately identifying individuals who are at risk for developing Alzheimer's disease (AD).</p> <p>Methods</p> <p>The current study utilized a case-control design using data from an ongoing validation study of the Alzheimer's Questionnaire (AQ), an informant-based dementia assessment. Data from 51 cognitively normal (CN) individuals participating in a brain donation program and 47 aMCI individuals seen in a neurology practice at the same institute were analyzed to determine which AQ items differentiated aMCI from CN individuals.</p> <p>Results</p> <p>Forward stepwise multiple logistic regression analysis which controlled for age and education showed that 4 AQ items were strong indicators of aMCI which included: repetition of statements and/or questions [OR 13.20 (3.02, 57.66)]; trouble knowing the day, date, month, year, and time [OR 17.97 (2.63, 122.77)]; difficulty managing finances [OR 11.60 (2.10, 63.99)]; and decreased sense of direction [OR 5.84 (1.09, 31.30)].</p> <p>Conclusions</p> <p>Overall, these data indicate that certain informant-reported cognitive symptoms may help clinicians differentiate individuals with aMCI from those with normal cognition. Items pertaining to repetition of statements, orientation, ability to manage finances, and visuospatial disorientation had high discriminatory power.</p

    Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    Get PDF
    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 Āµm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies

    The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories

    Get PDF
    The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from āˆ¼0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-
    • ā€¦
    corecore