238 research outputs found

    Diversity of chemistry and excitation conditions in the high-mass star forming complex W33

    Full text link
    The object W33 is a giant molecular cloud that contains star forming regions at various evolutionary stages from quiescent clumps to developed H II regions. Since its star forming regions are located at the same distance and the primary material of the birth clouds is probably similar, we conducted a comparative chemical study to trace the chemical footprint of the different phases of evolution. We observed six clumps in W33 with the Atacama Pathfinder Experiment (APEX) telescope at 280 GHz and the Submillimeter Array (SMA) at 230 GHz. We detected 27 transitions of 10 different molecules in the APEX data and 52 transitions of 16 different molecules in the SMA data. The chemistry on scales larger than ∼\sim0.2 pc, which are traced by the APEX data, becomes more complex and diverse the more evolved the star forming region is. On smaller scales traced by the SMA data, the chemical complexity and diversity increase up to the hot core stage. In the H II region phase, the SMA spectra resemble the spectra of the protostellar phase. Either these more complex molecules are destroyed or their emission is not compact enough to be detected with the SMA. Synthetic spectra modelling of the H2_{2}CO transitions, as detected with the APEX telescope, shows that both a warm and a cold component are needed to obtain a good fit to the emission for all sources except for W33 Main1. The temperatures and column densities of the two components increase during the evolution of the star forming regions. The integrated intensity ratios N2_{2}H+^{+}(3−-2)/CS(6−-5) and N2_{2}H+^{+}(3−-2)/H2_{2}CO(42,2_{2,2}−-32,1_{2,1}) show clear trends as a function of evolutionary stage, luminosity, luminosity-to-mass ratio, and H2_{2} peak column density of the clumps and might be usable as chemical clocks.Comment: 66 pages, 28 figures, 8 tables, accepted for publication at A&

    Pre- and Post-burst Radio Observations of the Class 0 Protostar HOPS 383 in Orion

    Get PDF
    There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a ×35\times 35 mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Radio jets at centimeter wavelengths are often the only way of tracing the jets from embedded protostars. We searched the Very Large Array archive for the available observations of the radio counterpart of HOPS 383. The data show that the radio flux of HOPS 383 varies only mildly from January 1998 to December 2014, staying at the level of ∼200\sim 200 to 300 μ\muJy in the X band (∼9\sim 9 GHz), with a typical uncertainty of 10 to 20 μ\muJy in each measurement. We interpret the absence of a radio burst as suggesting that accretion and ejection enhancements do not follow each other in time, at least not within timescales shorter than a few years. Time monitoring of more objects and specific predictions from simulations are needed to clarify the details of the connection betwen accretion and jets/winds in YSOs.Comment: ApJ Letters, in pres

    Time Variability in Simulated Ultracompact and Hypercompact HII Regions

    Get PDF
    Ultracompact and hypercompact HII regions appear when a star with a mass larger than about 15 solar masses starts to ionize its own environment. Recent observations of time variability in these objects are one of the pieces of evidence that suggest that at least some of them harbor stars that are still accreting from an infalling neutral accretion flow that becomes ionized in its innermost part. We present an analysis of the properties of the HII regions formed in the 3D radiation-hydrodynamic simulations presented by Peters et al. as a function of time. Flickering of the HII regions is a natural outcome of this model. The radio-continuum fluxes of the simulated HII regions, as well as their flux and size variations are in agreement with the available observations. From the simulations, we estimate that a small but non-negligible fraction (~ 10 %) of observed HII regions should have detectable flux variations (larger than 10 %) on timescales of ~ 10 years, with positive variations being more likely to happen than negative variations. A novel result of these simulations is that negative flux changes do happen, in contrast to the simple expectation of ever growing HII regions. We also explore the temporal correlations between properties that are directly observed (flux and size) and other quantities like density and ionization rates.Comment: Monthly Notices of the Royal Astronomical Society, in press. The movie of free-free optical depth can be found at http://www.ita.uni-heidelberg.de/~tpeters/tau.av

    The Origin of OB Clusters: From 10 pc to 0.1 pc

    Full text link
    We observe the 1.2 mm continuum emission around the OB cluster forming region G10.6-0.4, using the IRAM 30m telescope MAMBO-2 bolometer array and the Submillimeter array. Comparison of the Spitzer 24 μ\mum and 8 μ\mum images with our 1.2 mm continuum maps reveals the ionization front of an HII region, the photon-dominated layer, and several 5 pc scale filaments following the outer edge of the photon-dominated layer. The filaments, which are resolved in the MAMBO-2 observations, show regularly spaced parsec-scale molecular clumps, embedded with a cluster of submillimeter molecular cores as shown in the SMA 0.87 mm observations. Toward the center of the G10.6-0.4 region, the combined SMA+IRAM 30m continuum image reveals several, parsec-scale protrusions. They may continue down to within 0.1 pc of the geometric center of a dense 3 pc size structure, where a 200 M⊙_{\odot} OB cluster resides. The observed filaments may facilitate mass accretion onto the central cluster--forming region in the presence of strong radiative and mechanical stellar feedbacks. Their filamentary geometry may also facilitate fragmentation. We did not detect any significant polarized emission at 0.87 mm in the inner 1 pc region with the SMA.Comment: 32 pages, 10 figures, Accepted by ApJ on 2011.October

    Flickering of 1.3 cm Sources in Sgr B2: Towards a Solution to the Ultracompact HII Region Lifetime Problem

    Full text link
    Accretion flows onto massive stars must transfer mass so quickly that they are themselves gravitationally unstable, forming dense clumps and filaments. These density perturbations interact with young massive stars, emitting ionizing radiation, alternately exposing and confining their HII regions. As a result, the HII regions are predicted to flicker in flux density over periods of decades to centuries rather than increasing monotonically in size as predicted by simple Spitzer solutions. We have recently observed the Sgr B2 region at 1.3 cm with the VLA in its three hybrid configurations (DnC, CnB and BnA) at a resolution of 0.25''. These observations were made to compare in detail with matched continuum observations from 1989. At 0.25'' resolution, Sgr B2 contains 41 UC HII regions, 6 of which are hypercompact. The new observations of Sgr B2 allow comparison of relative peak flux densites for the HII regions in Sgr B2 over a 23 year time baseline (1989-2012) in one of the most source-rich massive star forming regions in the Milky Way. The new 1.3 cm continuum images indicate that four of the 41 UC HII regions exhibit significant changes in their peak flux density, with one source (K3) dropping in peak flux density, and the other 3 sources (F10.303, F1 and F3) increasing in peak flux density. The results are consistent with statistical predictions from simulations of high mass star formation, suggesting that they offer a solution to the lifetime problem for ultracompact HII regions.Comment: 12 pages, 3 figures, Accepted for publication in the Astrophysical Journal Letter

    New Maser Emission from Nonmetastable Ammonia in NGC 7538. II. Green Bank Telescope Observations Including Water Masers

    Full text link
    We present new maser emission from ^{14}NH_3 (9,6) in NGC 7538. Our observations include the known spectral features near v_LSR = -60 km/s and -57 km/s and several more features extending to -46 km/s. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other ^{14}NH_3 (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km/s < v_LSR < -4 km/s, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H_2O and, now, ^{14}NH_3 are the only masers known to exhibit emission outside of the velocity range -62 km/s < v_LSR < -51 km/s. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search to date toward any source for emission from the CC^{32}S and CC^{34}S molecules, indicating an age greater than \approx 10^4 yr for IRS 1-3. We discuss these findings in the context of embedded stellar cores and recent models of the region.Comment: 7 pages, 4 figures, 3 tables; accepted to AJ; color figures only on arxiv; revised to include references and minor proof change
    • …
    corecore