9 research outputs found

    Foraging-Related Activity of Bald Eagles at a Washington Seabird Colony and Seal Rookery

    Get PDF
    From 1980 to 1998, Washington\u27s Bald Eagle (Haliaeetus leucocephalus) population increased at an annual rate of 10. Over the same time period, foraging activity of Bald Eagles at marine bird breeding colonies also increased. From 1993 to 2008, we observed foraging-related behavior of Bald Eagles on Violet Point, Protection Island. This island hosts more than 70 of the breeding seabirds in Washington\u27s inner seaways and serves as an important rookery for harbor seals (Phoca vitulina). We found that (1) eagles landed more frequently in seal haul-out (beach) areas than in gull-nesting (non-beach) areas of Violet Point, and that subadult eagles were more likely to land in gull-nesting areas than were adult eagles; (2) the presence of eagles on the beach was positively related to the presence of harbor seals on the beach; (3) a greater-than-expected number of adult eagles as compared with subadult eagles preyed on gull chicks; (4) subadult and adult eagles that attempted prey capture were equally successful at snatching gull chicks from the gull colony; (5) eagles were more likely to prey on gull eggs in tall grass than on gull eggs in sparse vegetation. Prey remains beneath one eagle nest on the island did not accurately reflect the range and relative frequencies of observed eagle predation events. Although seal afterbirths and dead pups constitute a major component of the diet of Bald Eagles on the island, the effect of eagles on live seals is probably negligible. In contrast, direct predation and indirect effects of eagle activity on Glaucous-winged Gull (Larus glaucescens) reproductive success may be substantial and may have been partly responsible for a 44 decrease in the number of gull nests in the colony from 19932008. © 2010 The Raptor Research Foundation, Inc

    Predicting Dynamics of Aggregate Loafing Behavior in Glaucous-winged Gulls (Larus glaucescens) at a Washington Colony

    Get PDF
    Seabirds move throughout the day in changing, patchy environments as they engage in various behaviors. We studied the diurnal abundance dynamics of Glaucous-winged Gulls (Larus glaucescens) in a habitat patch dedicated to loafing in the Strait of Juan de Fuca, Washington. We constructed three differential equation models as alternative hypotheses and then used model selection techniques to choose the one that most accurately described the system. We validated the model on an independent data set, made a priori model predictions, and conducted a field test of the predictions. Clear dynamic patterns emerged in the abundance of loafing gulls, even though individuals moved in and out of the loafing area more or less continuously throughout the day. Temporal patterns in aggregate loafing behavior are predicted by three environmental factors: day of the year, height of the tide, and solar elevation. This result is important for several reasons: (1) it reduces the aggregate behavior of complicated vertebrates to a simple mathematical equation, (2) it gives an example of a field system in which animal abundances are determined largely by low dimensional exogenous forces, and (3) it provides an example of accurate quantitative prediction of animal numbers in the field. From the point of view of conservation biology and resource management, the result is important because of the pervasive need to explain and predict numbers of organisms in time and space

    Modeling Territory Attendance and Preening Behavior in a Seabird Colony as Functions of Environmental Conditions

    No full text
    In previous studies we developed a general compartmental methodology for modeling animal behavior and applied the methodology to marine birds and mammals. In this study we used the methodology to construct a system of two differential equations to model the dynamics of territory attendance and preening in a gull colony on Protection Island, Strait of Juan de Fuca, Washington. We found that colony occupancy was driven primarily by abiotic environmental conditions, including tide height, time of day, solar elevation, and wind speed over open water. For birds in the colony, preening behavior was driven to some extent by abiotic environmental conditions (including time of day, solar elevation, humidity, and wind speed on the colony), but apparently was driven primarily by local and/or biotic effects not included in the model. In terms of R 2 values, the model explained 65% and 37% of the variability in colony occupancy and preening data, respectively, as a function of these six abiotic environmental factors. © 2007 Taylor & Francis Group, LLC

    Predicting the Dynamics of Animal Behaviour in Field Populations

    No full text
    Many species show considerable variation in behaviour among individuals. We show that some behaviours are largely deterministic and predictable with mathematical models. We propose a general differential equation model of behaviour in field populations and use the methodology to explain and predict the dynamics of sleep and colony attendance in seabirds as a function of environmental factors. Our model explained over half the variability in the data to which it was fitted, and it predicted the dynamics of an independent data set. Differential equation models may provide new approaches to the study of behaviour in animals and humans. © 2007 The Association for the Study of Animal Behaviour
    corecore