56 research outputs found

    Utilization of COVID-19 Treatments and Clinical Outcomes among Patients with Cancer: A COVID-19 and Cancer Consortium (CCC19) Cohort Study.

    Get PDF
    Among 2,186 U.S. adults with invasive cancer and laboratory-confirmed SARS-CoV-2 infection, we examined the association of COVID-19 treatments with 30-day all-cause mortality and factors associated with treatment. Logistic regression with multiple adjustments (e.g., comorbidities, cancer status, baseline COVID-19 severity) was performed. Hydroxychloroquine with any other drug was associated with increased mortality versus treatment with any COVID-19 treatment other than hydroxychloroquine or untreated controls; this association was not present with hydroxychloroquine alone. Remdesivir had numerically reduced mortality versus untreated controls that did not reach statistical significance. Baseline COVID-19 severity was strongly associated with receipt of any treatment. Black patients were approximately half as likely to receive remdesivir as white patients. Although observational studies can be limited by potential unmeasured confounding, our findings add to the emerging understanding of patterns of care for patients with cancer and COVID-19 and support evaluation of emerging treatments through inclusive prospective controlled trials. SIGNIFICANCE: Evaluating the potential role of COVID-19 treatments in patients with cancer in a large observational study, there was no statistically significant 30-day all-cause mortality benefit with hydroxychloroquine or high-dose corticosteroids alone or in combination; remdesivir showed potential benefit. Treatment receipt reflects clinical decision-making and suggests disparities in medication access.This article is highlighted in the In This Issue feature, p. 1426

    The Emerging Role of Circulating Tumor Cell Detection in Genitourinary Cancer

    No full text
    Purpose: Circulating tumor cells are malignant cells in peripheral blood that originate from primary tumors or metastatic sites. The heterogeneous natural history and propensity for recurrence in prostate, bladder and kidney cancers are well suited for improved individualization of care using circulating tumor cells. The potential clinical applications of circulating tumor cells include early diagnosis, disease prediction and prognosis, and selection of appropriate therapies. Materials and Methods: The PubMed (R) and Web of Science (R) databases were searched using the key words circulating tumor cells, CTC, prostate, kidney, bladder, renal cell carcinoma and transitional cell carcinoma. Relevant articles and references from 1994 to 2011 were reviewed for data on the detection and significance of circulating tumor cells in genitourinary cancer. Results: Technical challenges have previously limited the widespread introduction of circulating tumor cell detection in routine clinical care. Recently novel platforms were introduced to detect these cells that offer the promise of overcoming these limitations. We reviewed the current state of circulating tumor cell capture technologies and their clinical applications for genitourinary cancers. Conclusions: In genitourinary cancer circulating tumor cell enumeration has been useful for prognosis in patients with castration resistant prostate cancer. Soon characterizing individual circulating tumor cells in blood will serve as a noninvasive real-time liquid biopsy to monitor molecular changes in cancer, allowing clinicians to custom tailor treatment strategies. Circulating tumor cells will serve as a treatment response biomarker. Finally, circulating tumor cell detection promises to assist in the early detection of clinically localized cancers, facilitating curative therapy

    The Emerging Role of Circulating Tumor Cell Detection in Genitourinary Cancer

    No full text
    Purpose: Circulating tumor cells are malignant cells in peripheral blood that originate from primary tumors or metastatic sites. The heterogeneous natural history and propensity for recurrence in prostate, bladder and kidney cancers are well suited for improved individualization of care using circulating tumor cells. The potential clinical applications of circulating tumor cells include early diagnosis, disease prediction and prognosis, and selection of appropriate therapies. Materials and Methods: The PubMed (R) and Web of Science (R) databases were searched using the key words circulating tumor cells, CTC, prostate, kidney, bladder, renal cell carcinoma and transitional cell carcinoma. Relevant articles and references from 1994 to 2011 were reviewed for data on the detection and significance of circulating tumor cells in genitourinary cancer. Results: Technical challenges have previously limited the widespread introduction of circulating tumor cell detection in routine clinical care. Recently novel platforms were introduced to detect these cells that offer the promise of overcoming these limitations. We reviewed the current state of circulating tumor cell capture technologies and their clinical applications for genitourinary cancers. Conclusions: In genitourinary cancer circulating tumor cell enumeration has been useful for prognosis in patients with castration resistant prostate cancer. Soon characterizing individual circulating tumor cells in blood will serve as a noninvasive real-time liquid biopsy to monitor molecular changes in cancer, allowing clinicians to custom tailor treatment strategies. Circulating tumor cells will serve as a treatment response biomarker. Finally, circulating tumor cell detection promises to assist in the early detection of clinically localized cancers, facilitating curative therapy

    Bladder cancer

    No full text
    Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics

    Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma

    No full text
    Item does not contain fulltex
    corecore