173 research outputs found
On the nature of reconnection at a solar coronal null point above a separatrix dome
Three-dimensional magnetic null points are ubiquitous in the solar corona,
and in any generic mixed-polarity magnetic field. We consider magnetic
reconnection at an isolated coronal null point, whose fan field lines form a
dome structure. We demonstrate using analytical and computational models
several features of spine-fan reconnection at such a null, including the fact
that substantial magnetic flux transfer from one region of field line
connectivity to another can occur. The flux transfer occurs across the current
sheet that forms around the null point during spine-fan reconnection, and there
is no separator present. Also, flipping of magnetic field lines takes place in
a manner similar to that observed in quasi-separatrix layer or slip-running
reconnection.Comment: Accepted for publication in the Astrophysical Journa
A Contemporary View of Coronal Heating
Determining the heating mechanism (or mechanisms) that causes the outer
atmosphere of the Sun, and many other stars, to reach temperatures orders of
magnitude higher than their surface temperatures has long been a key problem.
For decades the problem has been known as the coronal heating problem, but it
is now clear that `coronal heating' cannot be treated or explained in isolation
and that the heating of the whole solar atmosphere must be studied as a highly
coupled system. The magnetic field of the star is known to play a key role,
but, despite significant advancements in solar telescopes, computing power and
much greater understanding of theoretical mechanisms, the question of which
mechanism or mechanisms are the dominant supplier of energy to the chromosphere
and corona is still open. Following substantial recent progress, we consider
the most likely contenders and discuss the key factors that have made, and
still make, determining the actual (coronal) heating mechanism (or mechanisms)
so difficult
Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection
Numerical evidence for a finite-time singularity in ideal 3D
magnetohydrodynamics (MHD) is presented. The simulations start from two
interlocking magnetic flux rings with no initial velocity. The magnetic
curvature force causes the flux rings to shrink until they come into contact.
This produces a current sheet between them. In the ideal compressible
calculations, the evidence for a singularity in a finite time is that the
peak current density behaves like for a range of
sound speeds (or plasma betas). For the incompressible calculations consistency
with the compressible calculations is noted and evidence is presented that
there is convergence to a self-similar state. In the resistive reconnection
calculations the magnetic helicity is nearly conserved and energy is
dissipated.Comment: 4 pages, 4 figure
Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point
The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered
Is null-point reconnection important for solar flux emergence?
The role of null-point reconnection in a 3D numerical MHD model of solar
emerging flux is investigated. The model consists of a twisted magnetic flux
tube rising through a stratified convection zone and atmosphere to interact and
reconnect with a horizontal overlying magnetic field in the atmosphere. Null
points appear as the reconnection begins and persist throughout the rest of the
emergence, where they can be found mostly in the model photosphere and
transition region, forming two loose clusters on either side of the emerging
flux tube. Up to 26 nulls are present at any one time, and tracking in time
shows that there is a total of 305 overall, despite the initial simplicity of
the magnetic field configuration. We find evidence for the reality of the nulls
in terms of their methods of creation and destruction, their balance of signs,
their long lifetimes, and their geometrical stability. We then show that due to
the low parallel electric fields associated with the nulls, null-point
reconnection is not the main type of magnetic reconnection involved in the
interaction of the newly emerged flux with the overlying field. However, the
large number of nulls implies that the topological structure of the magnetic
field must be very complex and the importance of reconnection along separators
or separatrix surfaces for flux emergence cannot be ruled out.Comment: 26 pages, 12 figures. Added one referenc
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
Local re-acceleration and a modified thick target model of solar flare electrons
The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts
has become an almost 'Standard Model' of flare impulsive phase energy transport
and radiation. However, it faces various problems in the light of recent data,
particularly the high electron beam density and anisotropy it involves.} {We
consider how photon yield per electron can be increased, and hence fast
electron beam intensity requirements reduced, by local re-acceleration of fast
electrons throughout the HXR source itself, after injection.} {We show
parametrically that, if net re-acceleration rates due to e.g. waves or local
current sheet electric () fields are a significant fraction of
collisional loss rates, electron lifetimes, and hence the net radiative HXR
output per electron can be substantially increased over the CTTM values. In
this local re-acceleration thick target model (LRTTM) fast electron number
requirements and anisotropy are thus reduced. One specific possible scenario
involving such re-acceleration is discussed, viz, a current sheet cascade (CSC)
in a randomly stressed magnetic loop.} {Combined MHD and test particle
simulations show that local fields in CSCs can efficiently
accelerate electrons in the corona and and re-accelerate them after injection
into the chromosphere. In this HXR source scenario, rapid synchronisation and
variability of impulsive footpoint emissions can still occur since primary
electron acceleration is in the high Alfv\'{e}n speed corona with fast
re-acceleration in chromospheric CSCs. It is also consistent with the
energy-dependent time-of-flight delays in HXR features.Comment: 8 pages, 2 figure
Interchange Slip-Running Reconnection and Sweeping SEP Beams
We present a new model to explain how particles (solar energetic particles;
SEPs), accelerated at a reconnection site that is not magnetically connected to
the Earth, could eventually propagate along the well-connected open flux tube.
Our model is based on the results of a low-beta resistive magnetohydrodynamics
simulation of a three-dimensional line-tied and initially current-free bipole,
that is embedded in a non-uniform open potential field. The topology of this
configuration is that of an asymmetric coronal null-point, with a closed fan
surface and an open outer spine. When driven by slow photospheric shearing
motions, field lines, initially fully anchored below the fan dome, reconnect at
the null point, and jump to the open magnetic domain. This is the standard
interchange mode as sketched and calculated in 2D. The key result in 3D is
that, reconnected open field lines located in the vicinity of the outer spine,
keep reconnecting continuously, across an open quasi-separatrix layer, as
previously identified for non-open-null-point reconnection. The apparent
slipping motion of these field lines leads to form an extended narrow magnetic
flux tube at high altitude. Because of the slip-running reconnection, we
conjecture that if energetic particles would be traveling through, or be
accelerated inside, the diffusion region, they would be successively injected
along continuously reconnecting field lines that are connected farther and
farther from the spine. At the scale of the full Sun, owing to the super-radial
expansion of field lines below 3 solar radii, such energetic particles could
easily be injected in field lines slipping over significant distances, and
could eventually reach the distant flux tube that is well-connected to the
Earth
Why are flare ribbons associated with the spines of magnetic null points generically elongated?
Coronal magnetic null points exist in abundance as demonstrated by
extrapolations of the coronal field, and have been inferred to be important for
a broad range of energetic events. These null points and their associated
separatrix and spine field lines represent discontinuities of the field line
mapping, making them preferential locations for reconnection. This field line
mapping also exhibits strong gradients adjacent to the separatrix (fan) and
spine field lines, that can be analysed using the `squashing factor', . In
this paper we make a detailed analysis of the distribution of in the
presence of magnetic nulls. While is formally infinite on both the spine
and fan of the null, the decay of away from these structures is shown in
general to depend strongly on the null-point structure. For the generic case of
a non-radially-symmetric null, decays most slowly away from the spine/fan
in the direction in which increases most slowly. In particular,
this demonstrates that the extended, elliptical high- halo around the spine
footpoints observed by Masson et al. (Astrophys. J., 700, 559, 2009) is a
generic feature. This extension of the halos around the spine/fan
footpoints is important for diagnosing the regions of the photosphere that are
magnetically connected to any current layer that forms at the null. In light of
this, we discuss how our results can be used to interpret the geometry of
observed flare ribbons in `circular ribbon flares', in which typically a
coronal null is implicated. We conclude that both the physics in the vicinity
of the null and how this is related to the extension of away from the
spine/fan can be used in tandem to understand observational signatures of
reconnection at coronal null points.Comment: Pre-print version of article accepted for publication in Solar
Physic
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Realistic astrophysical environments are turbulent due to the extremely high
Reynolds numbers. Therefore, the theories of reconnection intended for
describing astrophysical reconnection should not ignore the effects of
turbulence on magnetic reconnection. Turbulence is known to change the nature
of many physical processes dramatically and in this review we claim that
magnetic reconnection is not an exception. We stress that not only
astrophysical turbulence is ubiquitous, but also magnetic reconnection itself
induces turbulence. Thus turbulence must be accounted for in any realistic
astrophysical reconnection setup. We argue that due to the similarities of MHD
turbulence in relativistic and non-relativistic cases the theory of magnetic
reconnection developed for the non-relativistic case can be extended to the
relativistic case and we provide numerical simulations that support this
conjecture. We also provide quantitative comparisons of the theoretical
predictions and results of numerical experiments, including the situations when
turbulent reconnection is self-driven, i.e. the turbulence in the system is
generated by the reconnection process itself. We show how turbulent
reconnection entails the violation of magnetic flux freezing, the conclusion
that has really far reaching consequences for many realistically turbulent
astrophysical environments. In addition, we consider observational testing of
turbulent reconnection as well as numerous implications of the theory. The
former includes the Sun and solar wind reconnection, while the latter include
the process of reconnection diffusion induced by turbulent reconnection, the
acceleration of energetic particles, bursts of turbulent reconnection related
to black hole sources as well as gamma ray bursts. Finally, we explain why
turbulent reconnection cannot be explained by turbulent resistivity or derived
through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection -
Concepts and Applications", editors W. Gonzalez, E. N. Parke
- …
