175 research outputs found

    A Comparative Study of PMETAC-Modified Mesoporous Silica and Titania Thin Films for Molecular Transport Manipulation

    Get PDF
    The manipulation and understanding of molecular transport across functionalized nanopores will take us closer to mimicking biological membranes and thus to design high-performance permselective separation systems. In this work, Surface-initiated atom transfer radical polymerization (SI-ATRP) of (2-methacryloyloxy)-ethyltrimethylammonium chloride (METAC) was performed on both mesoporous silica and mesoporous titania thin films. Pores were proven to be filled using ellipsometry and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Furthermore, the employed method leads to a polymer overlayer, whose thickness could be discriminated using a double-layer ellipsometry model. Cyclic voltammetry experiments reveal that the transport of electrochemically active probes is affected by the PMETAC presence, both due to the polymer overlayer and the confined charge of the pore-tethered PMETAC. A more detailed study demonstrates that ion permeability depends on the combined role of the inorganic scaffolds’ (titania and silica) surface chemistry and the steric and charge exclusion properties of the polyelectrolyte. Interestingly, highly charged negative walls with positively charged polymers may resemble zwitterionic polymer behavior in confined environments

    Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation

    Get PDF
    The mechanisms of electrostatically driven adsorption of proteins on charged surfaces are studied with a new theoretical framework. The acid-base behavior, charge distribution, and electrostatic contributions to the thermodynamic properties of the proteins are modeled in the presence of a charged surface. The method is validated against experimental titration curves and apparent pK a s. The theory predicts that electrostatic interactions favor the adsorption of proteins at their isoelectric points on charged surfaces despite the fact that the protein has no net charge in solution. Two known mechanisms explain adsorption under these conditions: (i) charge regulation (the charge of the protein changes due to the presence of the surface) and (ii) charge patches (the protein orients to place charged amino acids near opposite surface charges). This work shows that both mechanisms contribute to adsorption at low ionic strengths, whereas only the charge-patch mechanism operates at high ionic strength. Interestingly, the contribution of charge regulation is insensitive to protein orientation under all conditions, which validates the use of constant-charge simulations to determine the most stable orientation of adsorbed proteins. The present study also shows that the charged surface can induce large shifts in the apparent pK a s of individual amino acids in adsorbed proteins. Our conclusions are valid for all proteins studied in this work (lysozyme, α-amylase, ribonuclease A, and β-lactoglobulin), as well as for proteins that are not isoelectric but have instead a net charge in solution of the same sign as the surface charge, i.e. the problem of protein adsorption on the "wrong side" of the isoelectric point.Fil: Boubeta, Fernando Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Mesoporous Microspheres of Nickel-based Layered Hydroxides by Aerosol-Assisted Self-Assembly using Crystalline Nano-Building Blocks.

    Get PDF
    Structural control in micro- and nanometer scale is necessary to design highly functional materials. Crystalline mesoporous microspheres are expected to improve electrochemical, catalytic, and adsorption performances. In this study, we focused on the preparation of templated mesoporous microspheres of nickel-based layered hydroxides by using pre-crystallized nano-building blocks (NBBs). Layered nickel hydroxide nanoparticles were prepared through an epoxide-mediated alkalinization process and used as NBBs to construct microspheres. The spherical particles in micrometer scale were synthesized by an aerosol-assisted assembly of the NBBs dispersed in a solvent, in the presence of supramolecular templates. It was found that controlling the crystallization as well as the surface philicity permits to yield the NBB with an adequately small size and interparticle interactions that generate self-assembled mesoporous microspheres akin to those obtained in NBB-based mesoporous thin films. The preparation technique demonstrated here is highly versatile; templated mesoporous microspheres with various chemical compositions of nickel-based layered double hydroxides were successfully obtained.The present work was partially supported by JSPS KAKENHI, JSPS bilateral program, LNLS proposal SAXS1 18927, ANPCyT (PICT 2012-2087 and 2015-3526), UBACyT (20020130100610BA), Hitachi Metals Materials Science Foundation, The Sumitomo Foundation, and Izumi Science and Technology Foundation

    Microparticles with hetero-nanointerfaces: controlled assembly of cobalt hydroxide and nickel hydroxide nanoclusters towards improved electrochemical functions

    Get PDF
    The ultimate control of the interfaces of nanocomposite materials is essential to tailor and improve their physical/chemical properties in applications such as catalysis, or energy storage or production. Fabrication and co-assembly of a variety of nanostructured colloids is a promising way to design the interface of materials in nano-scale toward high functionality. In this study, we demonstrate a synthesis of colloids of nanocluster-sized (~ 2 nm) cobalt and nickel hydroxides and their assembly into microparticles that present hetero-nanointerfaces. Electrochemical properties were investigated to elucidate the effect of the hetero-nanointerface. Microparticles with hetero nanostructures composed of cobalt and nickel hydroxide nanoclusters revealed improved mass specific capacity (91.4 mAh/g) compared with respective microparticles with homo-nanointerface (cobalt hydroxide; 15.8 mAh/g: nickel hydroxide; 64.4 mAh/g). Further investigation suggests that the introduced hetero-nanointerface leads to lower charge transfer resistance and to improved electrochemical properties. The synthetic concept demonstrated here is expected to create unique hetero-nanointerfaces for various materials with wide-range of chemical composition towards improved and novel functionalities.The present work is partially supported by JSPS KAKENHI, LNLS proposal SAXS1 18927, ANPCyT (PICT 2087), UBACyT (20020130100610BA), Izumi Science and Technology Foundation (H29-J-130) and the Foundation for the Promotion of Ion Engineering

    One-pot synthesis of silica monoliths with hierarchically porous structure

    Get PDF
    Poly(furfuryl alcohol) (PFA) and block copolymer Pluronic F127 were used as pore templates to create mechanically robust silica monoliths with a hierarchical and interconnected macro?mesoporous network in an easy, reproducible bimodal scale templating process. Control over the morphology was obtained by varying the reactant ratios. Phase separation on the submicrometer scale occurred when furfuryl alcohol was cationically polymerized and therefore became immiscible with the solvent and the silica precursor. Upon a subsequent sol?gel reaction, a silica-F127 matrix formed around the PFA spheres, leading to macropore structures with mesoporous walls. Surface areas of the final structures ranged from 500 to 989 m2/g and a maximum pore volume of 4.5 mL/g was achieved. Under mildly acidic conditions, micelle-templated mesopores resulted. Interconnected macropores could be obtained by increasing the pH or the block copolymer concentration. The formation mechanism and the relationship between PFA, Pluronic F127 and acidity are discussed in detail.Fil: Drisko, Glenna L.. University of Melbourne; AustraliaFil: Zelcer, Andrés. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caruso, Rachel A.. University of Melbourne; AustraliaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin

    Microparticles with hetero-nanointerfaces: controlled assembly of cobalt hydroxide and nickel hydroxide nanoclusters towards improved electrochemical functions

    Get PDF
    The ultimate control of the interfaces of nanocomposite materials is essential to tailor and improve their physical/chemical properties in applications such as catalysis and energy storage and production. Fabrication and co-assembly of a variety of nanostructured colloids are promising ways to design the interface of materials in the nano-scale toward high functionality. In this study, we demonstrate the synthesis of colloids of nanocluster-sized (∼2 nm) cobalt and nickel hydroxides and their assembly into microparticles that present hetero-nanointerfaces. The electrochemical properties were investigated to elucidate the effect of the hetero-nanointerface. Microparticles with hetero nanostructures composed of cobalt and nickel hydroxide nanoclusters revealed improved mass specific capacity (91.4 mA h g-1) compared with the respective microparticles with homo-nanointerfaces (cobalt hydroxide, 15.8 mA h g-1; nickel hydroxide, 64.4 mA h g-1). Further investigation suggests that the introduced hetero-nanointerface leads to lower charge transfer resistance and improved electrochemical properties. The synthetic concept demonstrated here is expected to create unique hetero-nanointerfaces for various materials with a wide-range of chemical compositions towards improved and novel functionalities.Fil: Tarutani, Naoki. Osaka Prefecture University; JapónFil: Tokudome, Yasuaki. Osaka Prefecture University; JapónFil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Takahashi, Masahide. Osaka Prefecture University; Japó

    Click-based thiol-ene photografting of COOH groups to SiO2 nanoparticles: Strategies comparison

    Get PDF
    We present the study of the anchoring of carboxylic groups on SiO2 nanoparticles from different approximations based on the photochemical radical thiol-ene addition (PRTEA) reaction: a photografting approach between mercaptosuccinic acid (MSA) and vinyl-modified SiO2 nanoparticles and the post-grafting on the surface of silica colloids of the silane precursor 2-((2-(trimethoxysilyl)ethyl)thio)succinic acid (TMSMSA), obtained from the PRTEA. These synthetic strategies were compared with a widely common derivatization methodology based on the nucleophilic attack of surface-anchored amino groups with succinic anhydride. The successful functionalization of the colloidal silica was confirmed by infrared spectroscopy (FTIR), zeta potential at different pH and contact angle measurements. We found that although these three approaches were valid for −COOH immobilization, they had a noticeable impact on the dispersability and agglomeration of the colloidal suspension at the end of the synthesis. Scanning electron microscopy, dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) measurements indicated that the PRTEA photografting between MSA and vinyl-modified SiO2 resulted in highly dispersed colloidal particles. On the other hand, the presence of surface −COOH groups was highly beneficial for redispersion of the colloidal material after lyophilization or freeze-drying procedures.Fil: Penelas, María Jazmín. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Levi, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bordoni, Andrea Veronica. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wolosiuk, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Seguridad Nuclear y Ambiente. Gerencia de Química (CAC); Argentin

    Gold recycling at laboratory scale: from nanowaste to nanospheres

    Get PDF
    The market for products based on nanotechnology, and with it the use of nanomaterials and the generation of nanowaste, increases day by day. Among the vast variety of nanomaterials available, gold nanoparticles (AuNPs) are among the most studied and applied in commercial products. This current situation requires both the development of recovery methods to reduce the amount of nanowaste produced, and new synthetic methods that allow the reuse of recovered gold for new nanomaterial production, keeping in mind both economical and ecological considerations. In this work, a methodology to recover gold from aqueous laboratory nanowaste and transform it into an aqueous HAuCl4 solution was developed, using extremely simple procedures and readily available chemical reagents (NaCl, HCl, H2O2) and allowing the recovery of more than 99 % of the original gold. The experiments were performed by using both simulated and real laboratory nanowastes, and practically the same results were obtained. Moreover, the subsequent use of the obtained aqueous HAuCl4 solution from the recovered gold to produce spherical AuNPs through a seed-mediated approach was demonstrated. Thus, this work presents for the first time a complete recycling cycle from nanowaste to the reagent and back to the nanomaterial.Fil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: García, Carolina S.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Angelome, Paula Cecilia. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentin

    Synthesis and photocatalytic activity of titania monoliths prepared with controlled macro- and mesopore structure

    Get PDF
    Herein, we report a one-pot synthesis of crack-free titania monoliths with hierarchical macro-mesoporosity and crystalline anatase walls. Bimodal macroporosity is created through the polymer-induced phase separation of poly(furfuryl alcohol). The cationic polymerization of furfuryl alcohol is performed in situ and subsequently the polymer becomes immiscible with the aqueous phase, which includes titanic acid. Addition of template, Pluronic F127, increases the mesopore volume and diameter of the resulting titania, as the poly(ethylene glycol) block interacts with the titania precursor, leading to assisted assembly of the metal oxide framework. The hydrophobic poly(propylene glycol) micelle core could itself be swollen with monomeric and oligomeric furfuryl alcohol, allowing for mesopores as large as 18 nm. Variations in synthesis parameters affect porosity; for instance furfuryl alcohol content changes the size and texture of the macropores, water content changes the grain size of the titania and Pluronic F127 content changes the size and volume of the mesopore. Morphological manipulation improves the photocatalytic degradation of methylene blue. Light can penetrate several millimeters into the porous monolith, giving these materials possible application in commercial devices.Fil: Drisko, Glenna L.. University of Melbourne; AustraliaFil: Zelcer, Andrés. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Wang, Xingdong. Commonwealth Scientific And Industrial Research Organization; AustraliaFil: Caruso, Rachel A.. School Of Chemistry; Australia. Commonwealth Scientific And Industrial Research Organization; AustraliaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore