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Abstract 

We present the study of the anchoring of carboxylic groups on SiO2 nanoparticles from different 

approximations based on the photochemical radical thiol-ene addition (PRTEA) reaction: a 

photografting approach between mercaptosuccinic acid (MSA) and vinyl-modified SiO2 

nanoparticles and the post-grafting on the surface of silica colloids of the silane precursor 2-((2-

(trimethoxysilyl)ethyl)thio)succinic acid (TMSMSA), obtained from the PRTEA. These synthetic 

strategies were compared with a widely common derivatization methodology based on the 

nucleophilic attack of surface-anchored amino groups with succinic anhydride. The successful 

functionalization of the colloidal silica was confirmed by infrared spectroscopy (FTIR), zeta 

potential at different pH and contact angle measurements. We found that although these three 

approaches were valid for -COOH immobilization, they had a noticeable impact on the 

dispersability and agglomeration of the colloidal suspension at the end of the synthesis. Scanning 

electron microscopy, dynamic light scattering (DLS) and fluorescence correlation spectroscopy 

(FCS) measurements indicated that the PRTEA photografting between MSA and vinyl-modified 

SiO2 resulted in highly dispersed colloidal particles. On the other hand, the presence of surface –

COOH groups was highly beneficial for redispersion of the colloidal material after lyophilization or 

freeze-drying procedures. 

Keywords: Thiol-ene addition; colloids; click-reactions; silica; carboxylic groups 

1. Introduction 

Organosilica hybrid nanomaterials have become an essential building block for the synthesis and 

design of a wide variety of platforms with chemically modified surfaces. The silica chemistry can 

be combined with highly tunable organic moieties, tailoring special properties for biomedical, 

catalysis and optical applications.[1, 2]In this context, sol-gel chemistry finds an interesting niche 

where technological applications require bridging polymers, metals and glasses together; from 

biocompatible implants to waveguiding in optical materials[3, 4]. For instance, the development 

of stable and non-flammable hybrid composite polymer electrolytes for Li-ion batteries relies on 

the mixing of composites based on poly(ethylene glycols) and organic-inorganic silica 

nanoparticles formed in situ [5]. Evidently, the simple synthesis of organoalkoxysilanes molecules 

with the general formula R´nSi(OR)4-nis mandatory for obtaining key intermediates in the sol-gel 

processing as building blocks for the chemical functionalization of SiO2 materials.[6] In particular, 

immobilizing carboxylic groups on SiO2 surfaces is a highly desirable feature as they can switch 

surface charges with pH in adsorption processes [7, 8], stabilize Janus-type catalytic colloids[9], 

improve nanoparticles stability in freeze-thaw cycles and lyophilization[10] and are long-know 

anchor group for protein immobilization[11]. The lack of commercial availability of carboxylic 

organosilanes drove several synthetic methodologies for the incorporation of COOH groups onto 
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various SiO2 surfaces either by co-condensation or postgrafting: modification of a NH2-

functionalized surface with succinic acid, grafting of an organosilane bearing an ester group that 

gives rise to free carboxylic moiety after a hydrolysis step, hydrolysis of the nitrile group under 

hard acidic conditions. [12, 13] More recently, Feinle et al. reported the use of PtO2 as catalyst for 

the hydrosilylation of carbenoic acids with trialkoxysilanes[14, 15]. On the other hand, we have 

shown a simple approach for the synthesis of a series of organosilanes bearing deprotected 

carboxylic acids for a versatile functionalization of SiO2 mesoporous particles and thin films using 

the click-based photochemical radical thiol-ene addition (PRTEA)[15-18].This reaction involves the 

addition of a radical thiol, RS to an alkene molecule (hydrothiolation) and usually requires a 

photoinitiator (e.g. benzophenone) for an efficient RS production, as schematized in Scheme 1. 

This reaction scheme has been successfully employed to modify transition metal oxides, polymers 

and metals (for more specialized reviews see refs [6, 19, 20]). The anchoring of the carboxylic 

group using PRTEA results highly attractive as it involves an extremely simple synthetic step that 

does not require organic synthesis skills or specialized equipment and attains total reactant 

conversion after UV irradiation. 

 

In the present paper we explored the anchoring of carboxylic groups on SiO2 nanoparticles from 

different approximations of the PRTEA reaction: a post-photografting approach between the 

mercaptosuccinic acid (MSA) and vinyl-modified SiO2 nanoparticles and the post-grafting on the 

surface of silica colloids of the silane precursor 2-((2-(trimethoxysilyl)ethyl)thio)succinic acid 

(TMSMSA), obtained from the PRTEA (see Scheme 2). These approximations were compared with 

a widely common post-modification methodology based on the use of 3-aminopropylsilane and 

the posterior derivatization with succinic anhydride. Although the three approaches are valid for -

COOH immobilization, they have a noticeable impact on particles dispersibility and agglomeration 

both of the colloidal suspension at the end of the synthesis and of the fluorescent derivatives 

obtained by chemical post functionalization with fluorescein, as evidenced from light scattering 

measurements and FCS measurements, respectively. On the other hand, an improvement was 

also found in the dispersibility of the –COOH functionalized NPs after being frozen or dried with 

respect to the unmodified SiO2. 

 

2. Materials and methods 

2.1 Materials 

Tetraethylorthosilicate (98%, TEOS), vinyltriethoxysilane (97%, VTES), vinyltrimethoxysilane (98%, 

VTMS), aminopropyltriethoxysilane (99%, APTES), 2-mercaptosuccinic acid (97% MSA), 
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benzophenone (99%, Ph2CO), N,N- diisopropylethylamine (99%, DIPEA), succinic anhydride (99%), 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimidehydrochloride (EDC), N-hydroxysuccinimide (NHS), 

6-aminofluorescein hydrochloride (95%, 6 F-NH2), 5(6)-carboxifluorescein (F-COOH) were 

obtained from Sigma-Aldrich. Concentrated aqueous ammonia (28%) and absolute ethanol were 

obtained from Biopack. Methanol (MeOH) and tetrahydrofurane (THF) were from Merck. 

Methanol was dried over activated MS-3 Å before used. Water used was deionized (18MΩcm-1) 

and filtered. 

2.2 Synthesis 

2.2.1 Synthesis of SiO2 NPs 

Silica NPs was prepared according the Stöber method.[21] TEOS was added under vigorous 

stirring to a mixture containing H2O, concentrated aqueous ammonia and absolute ethanol. 

Typically, the molar concentration were TEOS 0,18 M, NH3 0,5 M and H2O 2 M. The mixture was 

stirred overnight under room temperature. The resultant suspension was used without further 

treatment for the next steps. 

2.2.2 Synthesis of SiO2-CH=CH2 and SiO2-NH2  

SiO2-CH=CH2 nanoparticles were synthesized from the bare SiO2 nanoparticles suspension 

previously obtained. The amount of VTES used in the synthesis corresponds to 50 times that 

required to cover the SiO2 NP surface with a monolayer of organosilane, assuming a grafting 

density of 2 molecules /nm2. In turn, the surface was calculated from the hydrodynamic diameter 

obtained by DLS and assuming that the density of the SiO2 NP is 1.58 g/cm3. The volume of VTES 

thus calculated was added to the SiO2 suspension under stirring and allowed to react overnight at 

room temperature. The SiO2-CH=CH2 suspension was then distilled under vacuum using a rotary 

evaporator to remove ammonia and water, until suspension pH was 6-7 (it was necessary to add 

extra ethanol to prevent the suspension from drying out). Excess vinylsilane was removed after 

two cycles of centrifugation and resuspension in fresh ethanol. The final pH of the suspension was 

5-6. The washed SiO2-CH=CH2 nanoparticles were then dispersed in ethanol, to obtain an 

approximately 6% w/v stock suspension. On the other hand, the SiO2-NH2 NP were synthesized 

adding APTES to a 2.5% v/v absolute ethanol solution, and then allowed to react for 5 h at room 

temperature according to previous works.[2] In this case, the excess of silane was removed first in 

two centrifugation/redispersion cycles while the remaining ammonia was removed under reduced 

pressure. The final concentration of these particles was 1.5 % w/v and the suspension pH was 6-7.  

2.2.3 Synthesis of SiO2-COOH derivatized nanoparticles 

Photo-grafting approach (PhG-SiO2): Carboxylic functional groups were anchored to the surface 

of SiO2-CH=CH2 NP by PRTEA. For this purpose, SiO2-CH=CH2 NP stock suspension was added to a 

ethanol solution containing MSA and Ph2CO to reach a final composition of 1 : 1 : 0.2 in VTES 
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(initially added for SiO2-CH=CH2 NP synthesis) : thioacid : Ph2CO mole ratio. The final 

concentration of the reaction suspension was 1% w/v in SiO2-CH=CH2 NP. The reaction suspension 

was then irradiated under stirring for 17 h, using a 15W, 18”-long black-light lamp (λmáx=352 nm). 

The product was washed with ethanol and water several times. The washed SiO2-COOH 

nanoparticles were dispersed in ethanol, to reach a final concentration of the suspension of 

approximately 6% w/v. 

Post-grafting approach (PG-SiO2): First, 2-((2-(trimethoxysilyl)ethyl)thio)succinic acid (TMSMSA) 

was prepared by PRTEA as previously reported 14. MSA, VTMS, Ph2CO and methanol were mixed in 

a 1 : 1 : 0.15 : 11 molar ratio, representing approximately 34 monolayers. This reaction solution 

was irradiated in the same conditions as in photografting approach. The carboxylic-derivatized 

silane was later anchored to the surface of SiO2 NP by post-grafting. For this purpose, the entire 

reaction volume of the photoreaction was added dropwise to a 1,5% w/v of an ethanolic 

suspension of SiO2 under stirring using DIPEA as a base catalyst.[22] This suspension was allowed 

to react at room temperature during overnight, and finally the temperature was raised to 45 °C 

for 2 h. The product was decanted, washed with ethanol and water several times, centrifuged and 

re-suspended in ethanol.  

Succinic anhydride reaction with amine derivatized approach (SA-SiO2): For this strategy, we 

used the method previously used by Joselevich et al. [23] The necessary volume of the stock 

ethanolic solution of SiO2-NH2 was centrifuged and resuspended in THF by ultrasonication, to 

obtain a 1.25% m/V suspension. The succinic anhydride was then added with stirring and the 

mixture was allowed to react overnight at room temperature. The molar ratio used was 8:1 

SA:APTES (initially added in the synthesis of SiO2-NH2 NPs). The mixture was decanted, 

centrifuged, and the solid obtained was washed several times with THF, ethanol, water and 

ethanol again. 

2.2.4 Synthesis of colloidal fluorescent probes 

The fluorescein derivative was immobilized on the surface of the SiO2-COOH NP through a 

coupling reaction in aqueous medium between the surface -COOH and the -NH2 group of 6-

aminofluorescein (F-NH2), according to the method previously used by Jain2. To this end, solutions 

of concentration of 1.5 mg/1 mL of EDC and NHS in water and 0.2 mg/0.2 mL of F-NH2 in DMF 

were prepared. From the last solution, a 1:10 dilution in water was made, and this was used for 

the synthesis. To carry out the reaction, the necessary volume of the aqueous solutions of EDC, 

NHS and F-NH2 was added successively to 1 mL of aqueous suspension containing 20 mg of SiO2-

COOH, in order to obtain a molar ratio –COOH : F-NH2 : EDC : NHS of 1 : 0.01 : 0.3 : 0.3. Then, 

water was added to complete a final volume of 2 mL. The number of moles of -COOH was 

estimated from the surface of the NP calculated from its hydrodynamic diameter and SiO2 NP 

density, in the same way as for the silanization functionalizations previously described, assuming 
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a grafting surface density of 2 groups -COOH/nm2. The mixture was allowed to react for 1.5 h 

under stirring at room temperature. To compare, using an analogous coupling methodology, 

carboxyfluorescein was bound to the surface of the SiO2-NH2 NPs. For FCS assays, a greater 

amount of immobilized fluorescein was required to achieve signal detection, so the synthesis was 

repeated using a ratio of –COOH : F-NH2 of 1 : 1. 

2.2.5 Dispersion of the nanoparticles in reconstituted suspensions 

10 mg of the NP’s dried under vacuum at room temperature for a week, were resuspended in 0.6 

mL of mQ water, stirred with vortex, ultrasonicated for 15 minutes and then were left for 2 days. 

Afterwards, 30 L of the reconstituted suspension was diluted in approximately 12 mL of ethanol, 

and DLS measurement was performed as described above. 

2.3 Characterization of SiO2 and surface modified SiO2 nanoparticles 

2.3.1 FTIR  

Samples were prepared mixing the NP’s previously dried under vacuum at room temperature for 

at least 4 days with KBr, until reach a final composition of 3% w/w. The mixture was then ground 

and dried 1 h at 130 °C before measure. Fourier Transform Infrared Spectroscopy measurements 

were performed with a Nicolet Magna 560 instrument, equipped with liquid N2 cooled MCT-A 

detector in DRIFT mode. 

2.3.2 Zeta potential  

Samples were prepared by adjusting the pH by adding small aliquots of HCl and NaOH solutions to 

SiO2 and modified SiO2 NP suspensions of approximate concentration 0.015% w/v in aqueous KCl 

10 mM. The pH values were measured using a pH-meter Metrohm 691. The measurements were 

performed in duplicate in a Zetasizer 2000 (Malvern Instruments Ltd.). 

2.3.3 Thermogravimetric Analysis (TGA)  

The surface grafting density of functional chemical groups (δ, number of chemical functional 

groups / nm2) was calculated using the Equation 1 from the mass loss obtained by TGA and NPs 

parameters.[24] Thermograms were first normalized respect to their initial mass and we assumed 

that before 200°C all mass losses where due to water removal. In Equation 1, morg is the final mass 

difference; minorg is the remaining inorganic mass, SNP, VNP and ρ correspond to the surface, 

volume and density of the SiO2 NPs from geometric estimations, Morg is the molecular weight of 

the incorporated organic group and NA is the Avogadro’s number. For the nanoparticle density, ρ, 

we assumed a value of 1,58 g/cm3 from literature.[25]  
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𝛿𝑒𝑥𝑝 =
(

𝑚𝑜𝑟𝑔

𝑚𝑖𝑛𝑜𝑟𝑔
)𝜌𝑉𝑁𝑃𝑁𝐴

𝑀𝑜𝑟𝑔𝑆𝑁𝑃
       (1) 

 

TGA was performed in air at a heating rate of 10 °C/min from room temperature to 650 ° C (TA 

Instruments, SDT Q600). 

 

2.3.4 Contact angle  

The measurement was performed on colloidal films prepared from 6% w/v ethanol suspension of 

the NP’s. In order to obtain them, square pieces of glass slides were prepared first immersed 

them in piranha solution for 15 minutes, then washed with plenty of water, and dried at 130 °C. 

Afterward, 100 L of the suspensions, previously ultrasonicated for 15 minutes, was spin coated 

at approximately 8000 rpm onto the clean glass slides and dried al 130 °C for 10 minutes; this last 

step was repeated 5 times. Just before measure, the colloidal films were dried at 130 °C for 1 h 

and let them cool in a desiccator. The contact angle was determined by the sessile drop method, 

using an automated Ramé-Hart Model 290 F4 Series goniometer. The value was obtained from 

the analysis with the Software Drop Image Advanced v.2.5 of a digital photograph acquired 

immediately after depositing the drop on the film as the slope of the contour of the drop at the 

point of contact of the three phases. The contact angle values reported correspond to the average 

between the right and left angle of the drop for seven drops deposited in different areas of the 

film. For each sample of NP's, the films were prepared and measured in duplicate. All the 

measurements were carried out under environmental conditions. 

2.3.5 Dynamic light scattering 

Samples were prepared by diluting a 50 μL aliquot of the NP suspension in approximately 12 mL 

of ethanol. After ultrasonication for a few minutes, the sample was measured in a BI-200SM 

Goniometer Ver. 2.0 (Brookhaven Instrument Corp.) scanning the range of 30-150° every 10° 

(λ=637nm) at 25 °C. Hydrodynamic diameter of the NP was calculated using the Stokes-Einstein 

equation from the cumulant analysis from Brookhaven Instruments built-in software package. 

Polydispersity Index (PDI) was calculated from the cumulants analysis and is dimensionless value 

of the broadness of the particle size distribution.  

2.3.6 Scanning electron microscopy  

Samples for imaging were prepared depositing a drop of a diluted suspension of the NP in ethanol 

on a small piece of Si wafer supported on a standard aluminum 12.7 mm pin stub covered with 
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self-adhesive carbon tape. Field emission scanning electron microscopy (FESEM) images were 

taken with a Carl Zeiss NTS - SUPRA 40.  

2.3.7 Fluorescence and absorbance spectra  

Fluorescence emission spectra were recorded using a PTI QuantaMaster™ 4 CW fluorometer, 

equipped with a xenon short-arc lamp UXL-75XE in a 1x1 cm quartz cell, from an aqueous 

suspension of 0.1 mg/mL concentration in NP, brought to pH 8 with NaOH solution. The excitation 

wavelength was 470 nm, and the emitted light was collected at 90° with respect to the excitation 

beam. The anisotropy of the emission, r, was determined using DMF as the suspension solvent for 

suppress the effect of dispersion on the obtained spectra. Spectra were taken by exciting the 

wavelength of the emission maximum, using one polarizer for the excitation and another for the 

emission, in the four possible configurations between the vertical and horizontal orientations. r 

was subsequently calculated according to the formula: 

𝑟 =
𝐼𝑉𝑉−𝐺.𝐼𝑉𝐻

𝐼𝑉𝑉+2𝐺.𝐼𝑉𝐻
     (2) 

Where 

𝐺 =
𝐼𝐻𝑉

𝐼𝐻𝐻
     (3) 

In parallel, the absorbance spectrum of each sample was measured in a Cary 50 Conc UV–Vis 

Spectrophotometer (Varian). 

2.3.8 Fluorescence correlation spectroscopy  

FCS measurements were performed in an FV1000 confocal microscope with the detector set in 

photon counting mode. The excitation laser was a multi-line Ar laser tuned at 488 nm (average 

power at the sample, 300 nW). The laser light was reflected by a dichroic mirror (DM 405/488) 

and focused through an Olympus UPlanSApo 60× oil immersion objective (NA = 1.35) onto the 

sample.  Fluorescence was collected in the range 500–600 nm at a frequency of 100000 Hz during 

90 s. The intensity trace was used to calculate the autocorrelation function as: 

𝐺(𝜏) =
〈𝛿𝐼(𝑡)∙𝛿𝐼(𝑡+𝜏)〉

〈𝐼(𝑡)〉2   (4) 

where I(t) represents the fluorescence intensity at time t, the brackets indicate average values 

over the time-course of the experiment and δI(t)=I(t)-<I(t)> represents the fluorescence 

fluctuation. The autocorrelation data was fitted with Eq (5) that assumes 3D free diffusion[26]: 
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𝐺(𝜏) =  𝐺𝑜 (1 +
𝜏

𝜏𝐷
)

−1

(1 +
𝜏

𝜔2𝜏𝐷
)

−1/2

 (5) 

where Go is the correlation function amplitude and D, the characteristic diffusion time,  can be 

used to estimate the diffusion coefficient of the probe [27]: 

𝐷 =
𝜔0

2

4𝜏𝐷
  (6) 

where o is the axial waist of the confocal observation volume (0.26  0.01 m, N =5) and was 

estimated using a reference solution of Rhodamine B in a 50% glycerol solution (D = 73 m2/s). 

From the Stokes - Einstein relationship, 𝐷 =
𝑘𝐵𝑇

6𝜂𝐷𝐻
 we obtain the hydrodynamic diameter (DH) of 

the particles. Recently, for colloids and nanoparticles that have diameters that are comparable in 

size to the confocal volume a correction is needed [28, 29]: 

𝜏𝑐

𝜏0
= 1 + 𝑘 (

𝑎2

(𝜔0/2)2)   (7) 

where c is the measured correlation time, 0 is the correlation time of a colloidal particle of the 

same radius but fluorescently labelled only in the center, a is hydrodynamic radius of the particle 

and k is a dimensionless constant for different labelling configurations. In our case, for a surface 

anchored dye k=0.42.  

Typically, between 7 to 30 independent FCS measurements were run for each experimental 

condition. 

 

3. Results and discussion 

3.1 COOH anchoring schemes to SiO2 NP  

 

Scheme 2 shows the different synthetic routes used to obtain surface functionalized carboxylic 

SiO2 nanoparticles. The starting silica spherical nanoparticles were obtained employing the 

Stöber-Fink-Bohn method. [21] After the synthesis, its surface can be easily modified with 

organoalkoxysilanes for further bridging of inorganic/organic components [30] with the following 

synthetic schemes: 

a) In the photo-grafting approach, the SiO2 NP surface was modified with vinyl groups by 

one-pot silanization with VTES. Excess vinylsilane is washed by centrifugation and 

resuspension in ethanol; the resulting colloidal suspension is used directly for the PRTEA-

click reaction with MSA.  
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b) In the post- grafting approach, the PRTEA-click reaction is carried out in solution first 

between the MSA and the VTMS. Subsequently, the organoalkoxysilane obtained was 

used as is for the surface modification of the SiO2 NPs.  

c) Finally, the obtained -COOH SiO2 NP were compared with a relatively common and 

widespread synthetic route based on the nucleophilic attack of anchored amino groups to 

a succinic anhydride (SA) molecule.[23] The first step was the one-pot silanization with 

APTES of the bare silica NPs that later react with SA resulting in a surface carboxylic 

terminal group. 

 

3.2  SiO2 NP physicochemical characterization 

3.2.1 FTIR, zeta potential, contact angle measurements 

 

Figure 1 compares the FTIR spectra of bare SiO2 nanoparticles, PRTEA MSA photografted SiO2 

nanoparticles (PhG-SiO2), post-grafted of a PRTEA MSA silane precursor (PG-SiO2) and the 

derivatization reaction of amine modified SiO2 NP with succinic anhydride (SA-SiO2). When a 

COOH is present, we observe the C=O stretching vibration at 1725 cm-1, in agreement with 

previous reports from our group [17, 18, 31]. All the samples show the typical broad band 

originated in the OH stretching of hydrogen bonded water molecules to the surface silanol and 

anchored carboxylic groups between 3800 – 3200 cm-1 (Figure ESI 3) and the band at 1630 cm-1 

due to the scissor bending vibration of the OH groups. Similar spectra have been obtained for the 

PRTEA photografted reaction between other thioacids such as mercaptoacetic acid (MAA), 

mercaptopropionic (MPA) and mercaptoundecanoic acid (MUDA) (Figure ESI 1.(a)). Other bands 

due to the anchored functional groups in the 1200 – 800 cm-1 region are completely masked by 

the strong Si-O-Si vibrations. In the case of the SA-SiO2 NPs obtained by derivatization of the 

amino group, the amide N-H bending generates a band at 1556 cm-1. In all the spectra, signals 

from the stretching and deformation of the C-H bond of alkyl residues are identifiable, especially 

in the PG- and SA-SiO2 spectra, although they are also present in the unmodified SiO2 due to the 

presence of partially hydrolyzed TEOS groups from the synthesis by the Stöber method [32]. 

Figure 1b shows the zeta potential values at pH 3 and 5 of the SiO2 NP, its derivatives 

functionalized with the intermediate groups and their carboxylated products. In the case of SiO2-

CH=CH2 NP, in which the surface silanol groups were partially replaced by the non-hydrolysable 

vinyl organic functional group, a shift is observed towards higher pHs of the isoelectric point and, 

in general, less negative zeta potential values than in the case of unmodified SiO2. After the 

addition of the MSA to the SiO2-CH=CH2 nanoparticles by the PRTEA reaction, the zeta potential 

values are markedly more negative than those of SiO2 at both pHs, indicating the immobilization 

of negatively charged ionizable groups. This trend is consistent with COOH deprotonation on the 
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particle surface in addition to the presence of isolated Si-OH groups [65]. A similar behaviour has 

been observed in the case of the other photographed thioacids (Figure ESI 1(b)). Aminated SiO2 

particles [33], on the other hand, show positive values in the pH range explored; nonetheless, an 

inversion of the surface charge is observed when reaction with succinic anhydride results in COOH 

groups[34]. The derivatized product with succinic anhydride, unlike the PhG-SiO2NPs, has a 

positive charge at pH 3, and recently acquires negative values at higher pH, which suggests that 

unmodified amino groups remain on its surface. Photografted PRTEA chemical surface 

modification can be easily correlated with the hydrophilicity changes of the surface chemical 

groups associated with each reaction step in this series as is evident in the contact angle values of 

the colloidal films corresponding to each nanoparticle, as presented in Figure 1c. Moreover, we 

obtain similar contact angles and zeta potential behavior for the SiO2 NP photographted with 

other thioacids as MAA, MPA and MUDA (Figures ESI 1 (c) and 2). 

The previous observations agree very well with thermograms of the different modified SiO2 NPs, 

shown in Table 1. If we observe the grafting density of the SA-SiO2, it is clear that the SA 

molecules intoduced do not modify completely the anchored NH2 groups. These moieties reveal 

themselves when the zeta potential is analyzed in solutions of low pH. On the other situations, 

PG-SiO2 and PhG-SiO2, we obtained similar grafting COOH densities. Moreover, since MSA carries 

two COOH groups we should have expected a theoretical 2:1 ratio with the vynil-modified 

surface; however, surface steric limitations must limit the number of COOH groups.  

 

3.2.2 DLS  

DLS provides valuable information of the level of aggregation and interaction between suspended 

particles in solution.  Table 2 shows the ratio of the hydrodynamic diameter values obtained by 

DLS between the functionalized particles and the respective unmodified SiO2 NPs precursors. In 

the case of PhG-SiO2 NPs, we observed that the original hydrodynamic diameter is conserved 

throughout all the synthesis steps: vinyl surface functionalization and photo-grafting of the MSA 

molecule. In this context, we may remind the reader that the post-grafting of thioacids to 

anchored vinyl groups on the SiO2 particle has been referred as an "ene-thiol" approach. [35] In 

this case, the photogenerated RS  thiols attack the surface anchored vinyl groups forming a 

thioether bond. On the other hand, when surface bound thiols react with vinyl compounds in 

solution the “thiol-ene” reaction may result in an undesired surface polymerization. [36] Thus, it is 

apparent after observing Table 2 that the particles remain dispersed in solution after the “ene-

thiol” PRTEA. Moreover, the polidispersity index (PDI), which is a measure of the sample 

monodispersity, shows no appreciable difference after surface modification (𝑃𝐷𝐼𝑆𝑖𝑂2
=0.030, 

𝑃𝐷𝐼𝑆𝑖𝑂2−𝐶𝐻=𝐶𝐻2
=0.032 and 𝑃𝐷𝐼𝑃ℎ𝐺−𝑆𝑖𝑂2

=0.048). This result can also be explained taking into 
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account that the approach used for the synthesis proceeds entirely in ethanol solution, solvent 

whereby both bare and modified SiO2 have great affinity, involves few separation steps and those 

that do not cause destabilization of the colloidal system. 

When we analyze the functionalization by post-grafting of the carboxyl-derivatized silane, there is 

a slight increase in the apparent hydrodynamic radius from DLS measurements and a slight 

tendency towards greater polydispersity (𝑃𝐷𝐼𝑆𝑖𝑂2
=0.085 and 𝑃𝐷𝐼𝑃𝐺− 𝑆𝑖𝑂2

=0.122). However, the 

degree of final monodispersion can be considered satisfactory and is also correlated with the 

synthesis methodology. 

On the other hand, the most notable contrast occurs in the case of the derivatization of surface 

bound amino groups. For this system we observe increased hydrodynamic diameters right after 

silanization with APTES, evidenced by a ratio very far from 1 and a high deviation diameter 

standard, due to the presence of polydispersed aggregates. This situation is also observed in the 

PDI values (𝑃𝐷𝐼𝑆 𝑖𝑂2−𝑁𝐻2
=0.147 vs 𝑃𝐷𝐼𝑆 𝑖𝑂2

=0.085). After derivatizing the amino groups with 

succinic anhydride, the starting hydrodynamic diameters are hardly recovered 

(𝑃𝐷𝐼𝑆𝐴− 𝑆 𝑖𝑂2
=0,129). Colloidal aggregation of SiO2 NP after APTES surface modification is 

commonplace and has been observed by various groups [37, 38]. This can be attributed to the 

fact that as -NH2 groups are anchored to the surface there is a slow decrease in the isoelectric 

point of the SiO2 surface due to silanol replacement. In other words, nanoparticle and colloidal 

stability are compromised because the silanol moieties are replaced with positively charged NH4
+ 

or uncharged NH3. Other sources of surface potential change have been recognized: formation of 

“clusters” of amine groups in hydrophobic coating solutions [39] and NH3
+  functions transferring 

a proton to neighboring Si-O- surface groups in an irreversibly manner[40]. Because of the 

aforementioned conditions, reversible and irreversible aggregation are usually observed as soon 

APTES is introduced in the alcosol medium for a “one-pot” approach. Common solutions to this 

problem relied on membrane filtration[41], centrifugation/redispersion cycles[37] and 

sonication[42]. Despite these obvious differences that can be found for particle sizing, PDI also 

gives a clear indication of the different dispersability of the SiO2-COOH particles in aqueous 

solutions. 

 

3.2.3 FESEM images 

 

Figure 2a shows typical FESEM image of a batch of synthesized SiO2 spherical nanoparticles with a 

diameter of 56 ± 6 nm. It should be noted that the characterization of the SiO2 NP by DLS yielded 

a value for its hydrodynamic diameter of 72 ±3 nm. Nanoparticle and colloid dimensions 

differences observed between electron microscopy and dynamic light scattering techniques are 
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relatively common and can be attributed to the particle composition (e.g. metallic, oxide, 

polymeric) that ultimately defines the surface interface chemistry [43]. Recently, Škvarla and 

coworkers, using atomic force microscopy, have proposed the existence of an elastic gel layer on 

the SiO2 colloidal surface that results in apparent “bigger” objects when in aqueous solutions[44]. 

At first glance, there are no differences neither in particle shape nor size after functionalization. 

Evaluating dispersibility of nanoparticle objects only from electron microscopy images is difficult 

due to capillary forces during specimen drying on supporting substrates; nevertheless, in the SEM 

images of SiO2-NH2 and PG-SiO2 NPs it can be seen how the former are mostly in the form of 

agglomerates, while the latter are more dispersed and even many are isolated, showing a 

correlation with DLS measurements in aqueous suspensions. 

In summary, the three synthetic approaches presented are valid for -COOH immobilization but 

have substantial differences regarding particle dispersibility and agglomeration of the colloidal 

suspension during the synthesis. PhG-SiO2 showed little or no aggregation at all during the 

chemical modification steps and will prove to be highly important as we will see below. 

3.2.4 Lyophilization and reconstitution of COOH- modified SiO2 NP 

Recently, lyophilization of nanoparticles has gained considerable interest for pharmacological and 

nanobiotechnological applications, in order to preserve their chemical and physical integrity [45]. 

For instance, mercaptoacetic functionalized Au nanoparticles have shown exceptional stability in 

lyophilization procedures[10]. Given that the PhG-SiO2 NPs exhibited remarkable dispersibility 

properties, we analyzed reconstituted suspensions from the unmodified SiO2 and PhG-SiO2 NPs 

after freezing and drying treatments, two instances related to the lyophilization process.  

We observed that the suspensions of bare SiO2 NPs reconstituted from frozen solutions and those 

dried in vacuum at room temperature for a week, in both ethanol and water, have higher mean 

DH compared to the initial suspensions. Besides, standard deviations and average polydispersity 

increase simultaneously (𝑃𝐷𝐼𝑆 𝑖𝑂2 ,𝑓𝑟𝑜𝑧𝑒𝑛 =0,120 and 𝑃𝐷𝐼𝑆 𝑖𝑂2 ,𝑑𝑟𝑖𝑒𝑑 = 0,144 vs. 

𝑃𝐷𝐼𝑆𝑖𝑂2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙=0.037), which we attibute to the presence of a fraction of SiO2 NPs that aggregate 

in an irreversibly manner. Hydrogen bonding interactions are established between the 

nanoparticles through the surface silanol groups as the solution freezes. Moreover, these 

interactions are promoted both by the increase in local concentration (the formation of ice 

excludes solutes/colloids), the mechanical stress derived from crystallized water and the 

dehydration of the surface of the particles that take place during both treatments.[46] In contrast, 

freezing dry PhG-SiO2 NPs maintains both narrow diameter distribution and average 

polydispersity similar to the respective initial suspensions (𝑃𝐷𝐼𝑆 𝑖𝑂2−𝐶𝑂𝑂𝐻,𝑓𝑟𝑜𝑧𝑒𝑛 =0,082 and 

𝑃𝐷𝐼𝑆 𝑖𝑂2−𝐶𝑂𝑂𝐻,𝑑𝑟𝑖𝑒𝑑 = 0,024 vs. 𝑃𝐷𝐼𝑆𝑖𝑂2−𝐶𝑂𝑂𝐻,𝑖𝑛𝑖𝑡𝑖𝑎𝑙=0.048). In this case, the presence of 
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ionizable moieties keeps the particles dispersed by electrostatic repulsion, contributing to the 

stability of the colloidal suspension.[47] 

3.2.5 Chemical post-functionalization of COOH-modified SiO2 NP: Fluorescein labelling  

We have shown in previous works that the immobilized COOH groups within porous SiO2 

frameworks are chemically accessible for acid-base reactions and metal and lanthanide 

adsorption [17, 18, 31]. In this context, we tested the anchoring of a fluorescent dye as 

fluorescein with surface complementary dangling group amino fluorescein using a carbodiimide 

approach.  

Figure 3 shows the fluorescence spectrum of the PhG-SiO2, after being modified with 

aminofluorescein according to Scheme 3, with a maximum emission at 517 nm. Similar spectra 

have been obtained for the other fluorescent derivatives from the carboxylic NPs; small 

differences in peak emission (5 nm) respect to the free dye can be attributed to the change of 

photophysical parameters and have been observed in surface immobilized dyes (Figure ESI 

5(a)).[48, 49]  When the coupling reagents EDC and NHS are not present there is no fluorescence 

signal, pointing that the immobilization of fluorescein does not take place and we can rule out 

adsorption of the dye on the SiO2 surface. Interestingly, the emission band of fluorescein 

anchored to the nanoparticle presents a remarkable increase in intensity compared to that 

corresponding to free dye at the same concentration. This was previously reported and attributed 

to the suppression of the self-quenching effect generated by the free electron pair of the amino 

group on the fluorophore when it becomes involved in a covalent bond, which results in an 

increase in quantum fluorescence yield[50]. In addition, the immobilization of fluorescein on the 

surface of the nanoparticle is verified from fluorescence anisotropy experiments where we obtain 

an anisotropy of 0.2 at the wavelength of the emission maximum, close to the theoretical value of 

0.3 (Figure 3 Inset). [51] 

3.2.6 Fluorescence correlation spectroscopy 

The anchoring of fluorescent dyes to nanoparticles and colloids is an essential step for the design 

of cellular probes and sensors. FCS analysis of monodispersed luminescent probes offers a 

valuable tool for tracking molecular and biomolecular events. In this context, we studied the 

performance of the fluorescent derivatized SiO2-COOH NPs for FCS techniques. Figure 4 shows the 

normalized fluorescence intensity fluctuations of the PhG-SiO2 and PG-SiO2 NPs. It is evident that 

only the aqueous suspensions of the F-PhG-SiO2 probes derived from the SiO2-COOH obtained via 

PRTEA produced a relatively monodisperse population that gives an almost random fluorescence 

intensity fluctuation (Figure 4a). On the other hand, F-PG-SiO2 NPs show an irregular intensity 

fluctuation trace with the presence of spikes due to the presence of aggregates (Figure 4b). These 

results are in excelent agreement with the DLS results observed previously. Moreover, 
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carboxyfluorescein anchored to APTES derivatized SiO2 NPs and aminofluorescein bound to SA-

SiO2 resulted in highly polydisperse samples for FCS and could not be analyzed with this technique 

(not shown), as already observed with DLS. Figure 5 shows a typical FCS autocorrelation function 

G(t) for PhG-SiO2 NPs fitted to Equation 5. The hydrodynamic diameters obtained from FCS 

measurements resulted slightly higher than the values obtained from DLS measurements, as 

summarized in Table 4. However, when we corrected the measured correlation time c according 

to Equation 7 using the hydrodynamic radius obtained from DLS measurements, we observed that 

for the F-PhG-SiO2 NPs this relation is approximately equal, suggesting a negligible aggregation of 

the F-PhG-SiO2 NPs. In summary, the PRTEA reaction on SiO2 surfaces is an attractive approach for 

introducing COOH groups on colloidal surfaces, avoiding aggregation issues related to post-

modification of amino groups anchored on SiO2 surfaces. 

4. Conclusions 

Surface carboxylic modified SiO2 colloids were obtained from three different synthetic strategies: 

i) photochemical thiol-ene click reaction on vinyl-modified SiO2 NP, ii) post-grafting of a carboxyl-

modified alkoxysilane using PRTEA and iii) a traditional synthetic approach based on post-

functionalization of amino-anchored groups. The methods employed showed remarkable 

differences between them in terms of aggregation, surface charge and redispersibility.  Although 

all methods proved to functionalize successfully the SiO2 surface with carboxylic groups, as 

evidenced from FTIR and TGA, colloidal stability and aggregation can be compromised along the 

surface modification process. This aspect is of uttermost importance if nanoparticle probes are 

designed to follow aggregation/adsorption processes or will work as luminescent probes. 

Nanoparticle surface chemistry determines the interaction of NPs with other biomolecules and 

their biological fate (e.g. protein corona formation).[52] In this context, PRTEA on vinyl-SiO2 

nanoparticles avoids the formation of agglomerates during surface modification, a phenomenon 

typically found when dealing with aminated surfaces.  
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Scheme 1. The photochemical radical thiol-ene addition mechanism (PRTEA). 
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Scheme 2. Different chemical routes used to obtain the SiO2-COOH . 

 

 

Scheme 3. Chemical reaction steps involved in the binding of fluorescein to SiO2-COOH NPs using 

EDC / NHS. 
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Figure 1. (a) FTIR spectra of: bare SiO2 NPs (1), PhG-SiO2 (2), PG-SiO2 (3) and SA-SiO2 NPs (4). (b) 

Zeta potential of the bare SiO2 NPs, modified with intermediate functional group (vinyl and 

amino), and SiO2-COOH NPs synthesized by the three different pathways. (c) Images of the sessile 

drop of water on colloidal films of the NP belonging to the photografting series and their contact 

angle. 
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Figure 2. FESEM micrographs of (a) starting bare SiO2, (b) PG-SiO2 and (c) SiO2-NH2 NPs. The scale 

bar indicates 100 nm. 
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Figure 3.  Fluorescence spectra of the NPs obtained after the derivatization of PhG-SiO2 NPs with 

F-NH2/EDC/NHS (1),  PhG-SiO2 NPs with F-NH2 and no EDC/NHS (2) and free F-NH2/EDC/NHS and 

no PhG-SiO2 NPs. Inset: Fluorescence anisotropy of free F-NH2 and NP-bound F-NH2. 
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Figure 4. Typical normalized fluorescence intensity fluctuations: PhG-SiO2 NPs (a) and PG-SiO2 NPs 

(b). 
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Figure 5.  Autocorrelation function G(t) for PhG-SiO2 NPs (a) and fitting residues  (b). (○: 

experimental data, solid line: fit to Equation 5) 

 

 

Table 1. Estimated grafting density of surface terminal groups, exp, from thermogravimetric 

experiments and Equation 1. 

NP exp / nm-2 COOH / nm-2 

SiO2-CH=CH2 3.2 - 

PhG-SiO2 2.5 4.9 

PG-SiO2 1.8 3.6 

SiO2-NH2 4.9 - 

SA-SiO2 2.0 2.0 

 

Table 2. Ratio between the hydrodynamic diameter obtained by DLS for the modified NPs with 

the intermediate functional groups, vinyl and amino, and for the SiO2-COOH NPs obtained by the 
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different pathways, and the hydrodynamic diameter of the respective unmodified starting SiO2 

NPs. 

SiO2-COOH synthesis pathway 

Photografted Post-grafted Derivatized 
𝐷𝐻,𝑆𝑖𝑂2−𝐶𝐻=𝐶𝐻2

𝐷𝐻,𝑆𝑖𝑂2

 1,02 ± 0,05 𝐷𝐻,𝑃𝐺−𝑆𝑖𝑂2

𝐷𝐻,𝑆𝑖𝑂2

 1,13 ± 0,07 

𝐷𝐻,𝑆𝑖𝑂2−𝑁𝐻2

𝐷𝐻,𝑆𝑖𝑂2

 2,6 ± 0,6 

𝐷𝑃ℎ𝐺−𝑆𝑖𝑂2

𝐷𝐻,𝑆𝑖𝑂2

 1,02 ± 0,06 
𝐷𝐻,𝑆𝐴−𝑆𝑖𝑂2

𝐷𝐻,𝑆𝑖𝑂2

 1,8 ± 0,1 

 

Table 3. Ratio between the hydrodynamic diameter obtained by DLS for the SiO2 and PhG-SiO2 
NPs in the reconstituted suspensions, DH,R, and the initial one, DH,i. 

 
𝐷𝐻,𝑅

𝐷𝐻,𝑖
 

 SiO2 PhG-SiO2 

Frozen NP 1,2 ± 0,2 1,07 ± 0,05 

Dry NP 1,2 ± 0,4 1,07 ± 0,04 

Table 4. Ratio between the DH from FCS and DLS for the modified F-SiO2 NPs obtained by the 

different synthesis pathways. (*) Ratio after correcting the measured correlation time c according 
to Equation 7. Agg.:aggregates 

 
𝐷𝐻,𝐹𝐶𝑆

𝐷𝐻,𝐷𝐿𝑆
 

𝐷𝐻,𝐹𝐶𝑆

𝐷𝐻,𝐷𝐿𝑆
 (∗) 

F-PhG-SiO2 1,19 1,14 

F-PG-SiO2 1,24 1,05 

F-SA-SiO2 Agg. Agg. 

F-CO-NH-SiO2 Agg. Agg. 
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