2,411 research outputs found

    On the Gannon-Lee Singularity Theorem in Higher Dimensions

    Full text link
    The Gannon-Lee singularity theorems give well-known restrictions on the spatial topology of singularity-free (i.e., nonspacelike geodesically complete), globally hyperbolic spacetimes. In this paper, we revisit these classic results in the light of recent developments, especially the failure in higher dimensions of a celebrated theorem by Hawking on the topology of black hole horizons. The global hyperbolicity requirement is weakened, and we expand the scope of the main results to allow for the richer variety of spatial topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra

    The Cosmic Censor Forbids Naked Topology

    Get PDF
    For any asymptotically flat spacetime with a suitable causal structure obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying conditions guaranteeing focusing of complete null geodesics, we prove that active topological censorship holds. We do not assume global hyperbolicity, and therefore make no use of Cauchy surfaces and their topology. Instead, we replace this with two underlying assumptions concerning the causal structure: that no compact set can signal to arbitrarily small neighbourhoods of spatial infinity (``i0i^0-avoidance''), and that no future incomplete null geodesic is visible from future null infinity. We show that these and the focusing condition together imply that the domain of outer communications is simply connected. Furthermore, we prove lemmas which have as a consequence that if a future incomplete null geodesic were visible from infinity, then given our i0i^0-avoidance assumption, it would also be visible from points of spacetime that can communicate with infinity, and so would signify a true naked singularity.Comment: To appear in CQG, this improved version contains minor revisions to incorporate referee's suggestions. Two revised references. Plain TeX, 12 page

    Non-Existence of Black Holes in Certain Λ<0\Lambda<0 Spacetimes

    Full text link
    Assuming certain asymptotic conditions, we prove a general theorem on the non-existence of static regular (i.e., nondegenerate) black holes in spacetimes with a negative cosmological constant, given that the fundamental group of space is infinite. We use this to rule out the existence of regular negative mass AdS black holes with Ricci flat scri. For any mass, we also rule out a class of conformally compactifiable static black holes whose conformal infinity has positive scalar curvature and infinite fundamental group, subject to our asymptotic conditions. In a limited, but important, special case our result adds new support to the AdS/CFT inspired positive mass conjecture of Horowitz and Myers.Comment: 17 pages, Latex. Typos corrected, minor changes to the text. Accepted for publication in Classical and Quantum Gravit

    A uniqueness theorem for the adS soliton

    Get PDF
    The stability of physical systems depends on the existence of a state of least energy. In gravity, this is guaranteed by the positive energy theorem. For topological reasons this fails for nonsupersymmetric Kaluza-Klein compactifications, which can decay to arbitrarily negative energy. For related reasons, this also fails for the AdS soliton, a globally static, asymptotically toroidal Λ<0\Lambda<0 spacetime with negative mass. Nonetheless, arguing from the AdS/CFT correspondence, Horowitz and Myers (hep-th/9808079) proposed a new positive energy conjecture, which asserts that the AdS soliton is the unique state of least energy in its asymptotic class. We give a new structure theorem for static Λ<0\Lambda<0 spacetimes and use it to prove uniqueness of the AdS soliton. Our results offer significant support for the new positive energy conjecture and add to the body of rigorous results inspired by the AdS/CFT correspondence.Comment: Revtex, 4 pages; Matches published version. More detail in Abstract and one equation corrected. For details of proofs and further results, see hep-th/020408

    Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

    Get PDF
    Chamber studies of glyoxal uptake onto ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions. Glyoxal monomers and oligomers were the dominant organic compounds formed under the conditions of this study; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. We have identified 1H-imidazole-2-carboxaldehyde as one C-N product. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active photochemistry was found to occur within aerosol during irradiated experiments. Carboxylic acids and organic esters were identified within the aerosol. An organosulphate, which had been previously assigned as glyoxal sulphate in ambient samples and chamber studies of isoprene oxidation, was observed only in the irradiated experiments. Comparison with a laboratory synthesized standard and chemical considerations strongly suggest that this organosulphate is glycolic acid sulphate, an isomer of the previously proposed glyoxal sulphate. Our study shows that reversibility of glyoxal uptake should be taken into account in SOA models and also demonstrates the need for further investigation of C-N compound formation and photochemical processes, in particular organosulphate formation

    Preparing athletes and teams for the Olympic Games: experiences and lessons learned from the world's best sport psychologists

    Get PDF
    As part of an increased effort to understand the most effective ways to psychologically prepare athletes and teams for Olympic competition, a number of sport psychology consultants have offered best-practice insights into working in this context. These individual reports have typically comprised anecdotal reflections of working with particular sports or countries; therefore, a more holistic approach is needed so that developing practitioners can have access to - and utilise - a comprehensive evidence-base. The purpose of this paper is to provide a panel-type article, which offers lessons and advice for the next generation of aspiring practitioners on preparing athletes and teams for the Olympic Games from some of the world’s most recognised and experienced sport psychologists. The sample comprised 15 sport psychology practitioners who, collectively, have accumulated over 200 years of first-hand experience preparing athletes and/or teams from a range of nations for six summer and five winter Olympic Games. Interviews with the participants revealed 28 main themes and 5 categories: Olympic stressors, success and failure lessons, top tips for neophyte practitioners, differences within one’s own consulting work, and multidisciplinary consulting. It is hoped that the findings of this study can help the next generation of sport psychologists better face the realities of Olympic consultancy and plan their own professional development so that, ultimately, their aspirations to be the world’s best can become a reality

    Topology of Event Horizons and Topological Censorship

    Get PDF
    We prove that, under certain conditions, the topology of the event horizon of a four dimensional asymptotically flat black hole spacetime must be a 2-sphere. No stationarity assumption is made. However, in order for the theorem to apply, the horizon topology must be unchanging for long enough to admit a certain kind of cross section. We expect this condition is generically satisfied if the topology is unchanging for much longer than the light-crossing time of the black hole. More precisely, let MM be a four dimensional asymptotically flat spacetime satisfying the averaged null energy condition, and suppose that the domain of outer communication \C_K to the future of a cut KK of \Sm is globally hyperbolic. Suppose further that a Cauchy surface Σ\Sigma for \C_K is a topological 3-manifold with compact boundary §\partial\S in MM, and §\S' is a compact submanifold of \bS with spherical boundary in §\S (and possibly other boundary components in M/§M/\S). Then we prove that the homology group H1(Σ,Z)H_1(\Sigma',Z) must be finite. This implies that either §\partial\S' consists of a disjoint union of 2-spheres, or §\S' is nonorientable and §\partial\S' contains a projective plane. Further, \partial\S=\partial\Ip[K]\cap\partial\Im[\Sp], and Σ\partial \Sigma will be a cross section of the horizon as long as no generator of \partial\Ip[K] becomes a generator of \partial\Im[\Sp]. In this case, if §\S is orientable, the horizon cross section must consist of a disjoint union of 2-spheres.}Comment: 11 pages, plain latex (minor revision: Σ\Sigma replaced by its closure in various places.

    A rotating black ring in five dimensions

    Get PDF
    The vacuum Einstein equations in five dimensions are shown to admit a solution describing an asymptotically flat spacetime regular on and outside an event horizon of topology S^1 x S^2. It describes a rotating ``black ring''. This is the first example of an asymptotically flat vacuum solution with an event horizon of non-spherical topology. There is a range of values for the mass and angular momentum for which there exist two black ring solutions as well as a black hole solution. Therefore the uniqueness theorems valid in four dimensions do not have simple higher dimensional generalizations. It is suggested that increasing the spin of a five dimensional black hole beyond a critical value results in a transition to a black ring, which can have an arbitrarily large angular momentum for a given mass.Comment: 4 pages, 3 figures; v2: minor improvement

    Some Comments on Gravitational Entropy and the Inverse Mean Curvature Flow

    Get PDF
    The Geroch-Wald-Jang-Huisken-Ilmanen approach to the positive energy problem to may be extended to give a negative lower bound for the mass of asymptotically Anti-de-Sitter spacetimes containing horizons with exotic topologies having ends or infinities of the form Σg×R\Sigma_g \times {\Bbb R}, in terms of the cosmological constant. We also show how the method gives a lower bound for for the mass of time-symmetric initial data sets for black holes with vectors and scalars in terms of the mass, Z(Q,P)|Z(Q,P)| of the double extreme black hole with the same charges. I also give a lower bound for the area of an apparent horizon, and hence a lower bound for the entropy in terms of the same function Z(Q,P)|Z(Q,P)|. This shows that the so-called attractor behaviour extends beyond the static spherically symmetric case. and underscores the general importance of the function Z(Q,P)|Z(Q,P)|. There are hints that higher dimensional generalizations may involve the Yamabe conjectures.Comment: 13pp. late

    Generalized Weyl Solutions

    Get PDF
    It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyl's construction is generalized here to arbitrary dimension D4D\ge 4. The general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal commuting non-null Killing vector fields is given either in terms of D-3 independent axisymmetric solutions of Laplace's equation in three-dimensional flat space or by D-4 independent solutions of Laplace's equation in two-dimensional flat space. Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat ``black ring'' with an event horizon of topology S^1 x S^2 held in equilibrium by a conical singularity in the form of a disc.Comment: 50 pages, 10 figures; v2: minor improvement
    corecore