The Gannon-Lee singularity theorems give well-known restrictions on the
spatial topology of singularity-free (i.e., nonspacelike geodesically
complete), globally hyperbolic spacetimes. In this paper, we revisit these
classic results in the light of recent developments, especially the failure in
higher dimensions of a celebrated theorem by Hawking on the topology of black
hole horizons. The global hyperbolicity requirement is weakened, and we expand
the scope of the main results to allow for the richer variety of spatial
topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra