1,517 research outputs found
Skin microbiota: a source of disease or defence?
Microbes found on the skin are usually regarded as pathogens, potential pathogens or innocuous symbiotic organisms. Advances in microbiology and immunology are revising our understanding of the molecular mechanisms of microbial virulence and the specific events involved in the host-microbe interaction. Current data contradict some historical classifications of cutaneous microbiota and suggest that these organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic. This review will summarize current information on bacterial skin flora including Staphylococcus, Corynebacterium, Propionibacterium, Streptococcus and Pseudomonas. Specifically, the review will discuss our current understanding of the cutaneous microbiota as well as shifting paradigms in the interpretation of the roles microbes play in skin health and disease
Cathelicidin suppresses lipid accumulation and hepatic steatosis by inhibition of the CD36 receptor.
Background and objectivesObesity is a global epidemic which increases the risk of the metabolic syndrome. Cathelicidin (LL-37 and mCRAMP) is an antimicrobial peptide with an unknown role in obesity. We hypothesize that cathelicidin expression correlates with obesity and modulates fat mass and hepatic steatosis.Materials and methodsMale C57BL/6 J mice were fed a high-fat diet. Streptozotocin was injected into mice to induce diabetes. Experimental groups were injected with cathelicidin and CD36 overexpressing lentiviruses. Human mesenteric fat adipocytes, mouse 3T3-L1 differentiated adipocytes and human HepG2 hepatocytes were used in the in vitro experiments. Cathelicidin levels in non-diabetic, prediabetic and type II diabetic patients were measured by enzyme-linked immunosorbent assay.ResultsLentiviral cathelicidin overexpression reduced hepatic steatosis and decreased the fat mass of high-fat diet-treated diabetic mice. Cathelicidin overexpression reduced mesenteric fat and hepatic fatty acid translocase (CD36) expression that was reversed by lentiviral CD36 overexpression. Exposure of adipocytes and hepatocytes to cathelicidin significantly inhibited CD36 expression and reduced lipid accumulation. Serum cathelicidin protein levels were significantly increased in non-diabetic and prediabetic patients with obesity, compared with non-diabetic patients with normal body mass index (BMI) values. Prediabetic patients had lower serum cathelicidin protein levels than non-diabetic subjects.ConclusionsCathelicidin inhibits the CD36 fat receptor and lipid accumulation in adipocytes and hepatocytes, leading to a reduction of fat mass and hepatic steatosis in vivo. Circulating cathelicidin levels are associated with increased BMI. Our results demonstrate that cathelicidin modulates the development of obesity
Influence of different beverages on the force degradation of intermaxillary elastics: an in vitro study
OBJECTIVE: The aim of this study was to evaluate in vitro the effects of frequently ingested beverages on force degradation of intermaxillary elastics. MATERIAL AND METHODS: One hundred and eighty 1/4-inch intermaxillary elastics (TP Orthodontics) were immersed into six different beverages: (1) Coca-Cola(®); (2) Beer; (3) Orange juice; (4) Red wine; (5) Coffee and (6) artificial saliva (control). The period of immersion was 15 min for the first and second cycles and 30 min for the third to fifth cycles. Tensile forces were read in a tensile testing machine before and after the five immersion cycles. One-way repeated measures ANOVA was used to identify significant differences. RESULTS: Force degradation was seen in all evaluated groups and at all observation periods (p<0.05). A greater degree of degradation was present at the initial periods, decreasing gradually over time. However, no statistically significant differences were seen among groups at the same periods, showing that different groups behaved similarly. CONCLUSION: The chemical nature of the evaluated beverages was not able to influence the degree of force degradation at all observation periods
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
Early Steps of HIV-1 Fusion Define the Sensitivity to Inhibitory Peptides That Block 6-Helix Bundle Formation
The HIV envelope (Env) glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB) conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides) potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides
Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production
© 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)
Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis
Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials
- …