14 research outputs found

    A Method for Manufacturing Oncological Phantoms for the Quantification of 18F-FDG PET and DW-MRI Studies

    Get PDF
    The aim of this work was to develop a method to manufacture oncological phantoms for quantitation purposes in 18F-FDG PET and DW-MRI studies. Radioactive and diffusion materials were prepared using a mixture of agarose and sucrose radioactive gels. T2 relaxation and diffusion properties of gels at different sucrose concentrations were evaluated. Realistic oncological lesions were created using 3D-printed plastic molds filled with the gel mixture. Once solidified, gels were extracted from molds and immersed in a low-radioactivity gel simulating normal background tissue. A breast cancer phantom was manufactured using the proposed method as an exploratory feasibility study, including several realistic oncological configurations in terms of both radioactivity and diffusion. The phantom was acquired in PET with 18F-FDG, immediately after solidification, and in DW-MRI the following day. Functional volumes characterizing the simulated BC lesions were segmented from PET and DW-MRI images. Measured radioactive uptake and ADC values were compared with gold standards. Phantom preparation was straightforward, and the time schedule was compatible with both PET and MRI measurements. Lesions appeared on 18F-FDG PET and DW-MRI images as expected, without visible artifacts. Lesion functional parameters revealed the phantom’s potential for validating quantification methods, in particular for new generation hybrid PET-MRI systems

    Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting

    Get PDF
    Diagnostic accuracy in FDG-PET imaging highly depends on the operating procedures. In this clinical study on dementia, we compared the diagnostic accuracy at a single-subject level of a) Clinical Scenarios, b) Standard FDG Images and c) Statistical Parametrical (SPM) Maps generated via a new optimized SPM procedure. We evaluated the added value of FDG-PET, either Standard FDG Images or SPM Maps, to Clinical Scenarios. In 88 patients with neurodegenerative diseases (Alzheimer's Disease—AD, Frontotemporal Lobar Degeneration—FTLD, Dementia with Lewy bodies—DLB and Mild Cognitive Impairment—MCI), 9 neuroimaging experts made a forced diagnostic decision on the basis of the evaluation of the three types of information. There was also the possibility of a decision of normality on the FDG-PET images. The clinical diagnosis confirmed at a long-term follow-up was used as the gold standard. SPM Maps showed higher sensitivity and specificity (96% and 84%), and better diagnostic positive (6.8) and negative (0.05) likelihood ratios compared to Clinical Scenarios and Standard FDG Images. SPM Maps increased diagnostic accuracy for differential diagnosis (AD vs. FTD; beta 1.414, p = 0.019). The AUC of the ROC curve was 0.67 for SPM Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images. In the MCI group, SPM Maps showed the highest predictive prognostic value (mean LOC = 2.46), by identifying either normal brain metabolism (exclusionary role) or hypometabolic patterns typical of different neurodegenerative conditions

    Radiogenomics, Breast Cancer Diagnosis and Characterization: Current Status and Future Directions

    No full text
    Breast cancer (BC) is a heterogeneous disease, affecting millions of women every year. Early diagnosis is crucial to increasing survival. The clinical workup of BC diagnosis involves diagnostic imaging and bioptic characterization. In recent years, technical advances in image processing allowed for the application of advanced image analysis (radiomics) to clinical data. Furthermore, -omics technologies showed their potential in the characterization of BC. Combining information provided by radiomics with –omics data can be important to personalize diagnostic and therapeutic work up in a clinical context for the benefit of the patient. In this review, we analyzed the recent literature, highlighting innovative approaches to combine imaging and biochemical/biological data, with the aim of identifying recent advances in radiogenomics applied to BC. The results of radiogenomic studies are encouraging approaches in a clinical setting. Despite this, as radiogenomics is an emerging area, the optimal approach has to face technical limitations and needs to be applied to large cohorts including all the expression profiles currently available for BC subtypes (e.g., besides markers from transcriptomics, proteomics and miRNomics, also other non-coding RNA profiles)

    In Silico Approach for the Definition of radiomiRNomic Signatures for Breast Cancer Differential Diagnosis

    No full text
    Personalized medicine relies on the integration and consideration of specific characteristics of the patient, such as tumor phenotypic and genotypic profiling. Background: Radiogenomics aim to integrate phenotypes from tumor imaging data with genomic data to discover genetic mechanisms underlying tumor development and phenotype. Methods: We describe a computational approach that correlates phenotype from magnetic resonance imaging (MRI) of breast cancer (BC) lesions with microRNAs (miRNAs), mRNAs, and regulatory networks, developing a radiomiRNomic map. We validated our approach to the relationships between MRI and miRNA expression data derived from BC patients. We obtained 16 radiomic features quantifying the tumor phenotype. We integrated the features with miRNAs regulating a network of pathways specific for a distinct BC subtype. Results: We found six miRNAs correlated with imaging features in Luminal A (miR-1537, -205, -335, -337, -452, and -99a), seven miRNAs (miR-142, -155, -190, -190b, -1910, -3617, and -429) in HER2+, and two miRNAs (miR-135b and -365-2) in Basal subtype. We demonstrate that the combination of correlated miRNAs and imaging features have better classification power of Luminal A versus the different BC subtypes than using miRNAs or imaging alone. Conclusion: Our computational approach could be used to identify new radiomiRNomic profiles of multi-omics biomarkers for BC differential diagnosis and prognosis

    Targeted radionuclide therapy: frontiers in theranostics

    Get PDF
    The concept of targeted radionuclide therapy (TRT) relies on the use of injected nuclear medicine as treating agents, targeted at the cellular or molecular level. The growth of the interest in TRT was stimulated by the advances in radionuclide production and labeling as well as by the improvement in the knowledge of appropriate and specific molecular targets. In recent years, different studies on TRT were focused on the evaluation of radionuclide compounds able to combine imaging of the disease with TRT, in a theranostic approach. This approach is of particular interest towards the personalization of treatments, allowing both the baseline characterization of oncological pathologies and treatment optimization by correct dosimetric calculation as well as therapy monitoring. This paper presents a review of recent literature on TRT, with a particular focus on clinical applications promoting such a theranostic approach, showing the impact of the synergy of diagnostic imaging and therapeutics.Fil: Gallivanone, Francesca. Consejo Nacional de InvestigaciĂłn; ItaliaFil: Valente, Mauro Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; Argentina. Universidad de La Frontera; ChileFil: Savi, Annarita. Instituto CientĂ­fico San Raffaele; ItaliaFil: Canevari, Carla. Instituto CientĂ­fico San Raffaele; ItaliaFil: Castiglioni, Isabella. Consejo Nacional de InvestigaciĂłn; Itali

    The impact of different 18FDG PET healthy subject scans for comparison with single patient in SPM analysis.

    No full text
    International audienceStatistical Parametric Mapping (SPM) has been applied for single-subject evaluation of [18F]FDG uptake in Alzheimer Disease (AD). In a single-subject framework, the patient is compared to a dataset of [18F]FDG PET images from healthy subjects (HS) evaluating brain metabolic abnormalities. No studies exist that assess the effects on SPM analysis of HS [18F]FDG PET datasets acquired from different subjects and using different PET scanners including the same or different PET scanners than those used for patients. This work aims to elucidate this issue from a methodological perspective

    Secreted miR-153 Controls Proliferation and Invasion of Higher Gleason Score Prostate Cancer

    No full text
    Prostate cancer (PC) is a male common neoplasm and is the second leading cause of cancer death in American men. PC is traditionally diagnosed by the evaluation of prostate secreted antigen (PSA) in the blood. Due to the high levels of false positives, digital rectal examination and transrectal ultrasound guided biopsy are necessary in uncertain cases with elevated PSA levels. Nevertheless, the high mortality rate suggests that new PC biomarkers are urgently needed to help clinical diagnosis. In a previous study, we have identified a network of genes, altered in high Gleason Score (GS) PC (GS ≥ 7), being regulated by miR-153. Until now, no publication has explained the mechanism of action of miR-153 in PC. By in vitro studies, we found that the overexpression of miR-153 in high GS cell lines is required to control cell proliferation, migration and invasion rates, targeting Kruppel-like factor 5 (KLF5). Moreover, miR-153 could be secreted by exosomes and microvesicles in the microenvironment and, once entered into the surrounding tissue, could influence cellular growth. Being upregulated in high GS human PC, miR-153 could be proposed as a circulating biomarker for PC diagnosis

    Circulating microRNAs as Potential Novel Diagnostic Biomarkers to Predict Drug Resistance in Temporal Lobe Epilepsy: A Pilot Study

    No full text
    MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as new potential epigenetic biomarkers. Here, we evaluate the efficacy of six circulating miRNA previously described in the literature as biomarkers for the diagnosis of temporal lobe epilepsy (TLE) and/or as predictive biomarkers to antiepileptic drug response. We measured the differences in serum miRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays in a cohort of 27 patients (14 women and 13 men; mean ± SD age: 43.65 ± 17.07) with TLE compared to 20 healthy controls (HC) matched for sex, age and ethnicity (11 women and 9 men; mean ± SD age: 47.5 ± 9.1). Additionally, patients were classified according to whether they had drug-responsive (n = 17) or drug-resistant (n = 10) TLE. We have investigated any correlations between miRNAs and several electroclinical parameters. Three miRNAs (miR-142, miR-146a, miR-223) were significantly upregulated in patients (expressed as average expression ± SD). In detail, miR-142 expression was 0.40 ± 0.29 vs. 0.16 ± 0.10 in TLE patients compared to HC (t-test, p < 0.01), miR-146a expression was 0.15 ± 0.11 vs. 0.07 ± 0.04 (t-test, p < 0.05), and miR-223 expression was 6.21 ± 3.65 vs. 1.23 ± 0.84 (t-test, p < 0.001). Moreover, results obtained from a logistic regression model showed the good performance of miR-142 and miR-223 in distinguishing drug-sensitive vs. drug-resistant TLE. The results of this pilot study give evidence that miRNAs are suitable targets in TLE and offer the rationale for further confirmation studies in larger epilepsy cohorts
    corecore