8,437 research outputs found

    Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method

    Full text link
    According to a recent proposal [S. Takayama et al., Appl. Phys. Lett. 87, 061107 (2005)], the triangular lattice of triangular air holes may allow to achieve a complete photonic band gap in two-dimensional photonic crystal slabs. In this work we present a systematic theoretical study of this photonic lattice in a high-index membrane, and a comparison with the conventional triangular lattice of circular holes, by means of the guided-mode expansion method whose detailed formulation is described here. Photonic mode dispersion below and above the light line, gap maps, and intrinsic diffraction losses of quasi-guided modes are calculated for the periodic lattice as well as for line- and point-defects defined therein. The main results are summarized as follows: (i) the triangular lattice of triangular holes does indeed have a complete photonic band gap for the fundamental guided mode, but the useful region is generally limited by the presence of second-order waveguide modes; (ii) the lattice may support the usual photonic band gap for even modes (quasi-TE polarization) and several band gaps for odd modes (quasi-TM polarization), which could be tuned in order to achieve doubly-resonant frequency conversion between an even mode at the fundamental frequency and an odd mode at the second-harmonic frequency; (iii) diffraction losses of quasi-guided modes in the triangular lattices with circular and triangular holes, and in line-defect waveguides or point-defect cavities based on these geometries, are comparable. The results point to the interest of the triangular lattice of triangular holes for nonlinear optics, and show the usefulness of the guided-mode expansion method for calculating photonic band dispersion and diffraction losses, especially for higher-lying photonic modes.Comment: 16 pages, 11 figure

    Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments

    Full text link
    The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai (2000), updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z \~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation prevents the gas temperature to fall below T_CMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given these assumptions and the initial (gaussian) distribution of E we compute the fragment mass distribution as a function of metallicity. We find that: (i) For Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading to low-mass fragments; (iii) The mass fraction in low-mass fragments is initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues to grow as Z is increased; (iv) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 0.1Z_sun, the two peaks merge into a singly-peaked mass function which might be regarded as the precursor of the ordinary Salpeter-like IMF.Comment: 38 pages, 16 figures, ApJ in pres

    Magnetic field and pressure effects on charge density wave, superconducting, and magnetic states in Lu5_5Ir4_4Si10_{10} and Er5_5Ir4_4Si10_{10}

    Full text link
    We have studied the charge-density-wave (CDW) state for the superconducting Lu5_5Ir4_4Si10_{10} and the antiferromagnetic Er5_5Ir4_4Si10_{10} as variables of temperature, magnetic field, and hydrostatic pressure. For Lu5_5Ir4_4Si10_{10}, the application of pressure strongly suppresses the CDW phase but weakly enhances the superconducting phase. For Er5_5Ir4_4Si10_{10}, the incommensurate CDW state is pressure independent and the commensurate CDW state strongly depends on the pressure, whereas the antiferromagnetic ordering is slightly depressed by applying pressure. In addition, Er5_5Ir4_4Si10_{10} shows negative magnetoresistance at low temperatures, compared with the positive magnetoresistance of Lu5_5Ir4_4Si10_{10}.Comment: 12 pages, including 6 figure

    Galactic Wind Signatures around High Redshift Galaxies

    Full text link
    We carry out cosmological chemodynamical simulations with different strengths of supernova (SN) feedback and study how galactic winds from star-forming galaxies affect the features of hydrogen (HI) and metal (CIV and OVI) absorption systems in the intergalactic medium at high redshift. We find that the outflows tend to escape to low density regions, and hardly affect the dense filaments visible in HI absorption. As a result, the strength of HI absorption near galaxies is not reduced by galactic winds, but even slightly increases. We also find that a lack of HI absorption for lines of sight (LOS) close to galaxies, as found by Adelberger et al., can be created by hot gas around the galaxies induced by accretion shock heating. In contrast to HI, metal absorption systems are sensitive to the presence of winds. The models without feedback can produce the strong CIV and OVI absorption lines in LOS within 50 kpc from galaxies, while strong SN feedback is capable of creating strong CIV and OVI lines out to about twice that distance. We also analyze the mean transmissivity of HI, CIV, and OVI within 1 h−1^{-1} Mpc from star-forming galaxies. The probability distribution of the transmissivity of HI is independent of the strength of SN feedback, but strong feedback produces LOS with lower transmissivity of metal lines. Additionally, strong feedback can produce strong OVI lines even in cases where HI absorption is weak. We conclude that OVI is probably the best tracer for galactic winds at high redshift.Comment: 16 pages, 16 figures, ApJ in press. Higher resolution version available at http://www.ociw.edu/~dkawata/research/papers.htm

    Equation of state of two--dimensional 3^3He at zero temperature

    Full text link
    We have performed a Quantum Monte Carlo study of a two-dimensional bulk sample of interacting 1/2-spin structureless fermions, a model of 3^3He adsorbed on a variety of preplated graphite substrates. We have computed the equation of state and the polarization energy using both the standard fixed-node approximate technique and a formally exact methodology, relying on bosonic imaginary-time correlation functions of operators suitably chosen in order to extract fermionic energies. As the density increases, the fixed-node approximation predicts a transition to an itinerant ferromagnetic fluid, whereas the unbiased methodology indicates that the paramagnetic fluid is the stable phase until crystallization takes place. We find that two-dimensional 3^3He at zero temperature crystallizes from the paramagnetic fluid at a density of 0.061 \AA−2^{-2} with a narrow coexistence region of about 0.002 \AA−2^{-2}. Remarkably, the spin susceptibility turns out in very good agreement with experiments.Comment: 7 pages, 7 figure

    Climate change over the high-mountain versus plain areas: Effects on the land surface hydrologic budget in the Alpine area and northern Italy

    Get PDF
    Climate change may intensify during the second half of the current century. Changes in temperature and precipitation can exert a significant impact on the regional hydrologic cycle. Because the land surface serves as the hub of interactions among the variables constituting the energy and water cycles, evaluating the land surface processes is essential to detail the future climate. In this study, we employ a trusted soil–vegetation–atmosphere transfer scheme, called the University of Torino model of land Processes Interaction with Atmosphere (UTOPIA), in offline simulations to quantify the changes in hydrologic components in the Alpine area and northern Italy, between the period of 1961–1990 and 2071–2100. The regional climate projections are obtained by the Regional Climate Model version 3 (RegCM3) via two emission scenarios – A2 and B2 from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. The hydroclimate projections, especially from A2, indicate that evapotranspiration generally increases, especially over the plain areas, and consequently the surface soil moisture decreases during summer, falling below the wilting point threshold for an extra month. In the high-mountain areas, due to the earlier snowmelt, the land surface becomes snowless for an additional month. The annual mean number of dry (wet) days increases remarkably (slightly), thus increasing the risk of severe droughts, and slightly increasing the risk of floods coincidently. Our results have serious implications for human life, including agricultural production, water sustainability, and general infrastructures, over the Alpine and adjacent plain areas and can be used to plan the managements of water resources, floods, irrigation, forestry, hydropower, and many other relevant activities
    • …
    corecore