170 research outputs found

    Procedimiento conciliatorio en Colombia

    Get PDF
    La conciliación es uno de los mecanismos alternativos de solución de conflictos más importantes y desarrollados en Colombia. Pese a que las normas legales que rigen la materia son las mismas, en la práctica parece que los conciliadores y centros de conciliación aplican el procedimiento de manera diferente. El presente texto tiene como objetivo poner a disposición de las personas interesadas en la conciliación una descripción de las etapas que integran el procedimiento conciliatorio. El análisis jurídico del procedimiento empieza con los requisitos de la solicitud de conciliación y termina con el seguimiento que se debe hacer al resultado del servicio ofrecido. Para el desarrollo de la presente obra, se integra la legislación, la jurisprudencia y los conceptos de línea institucional del Ministerio del Interior y de Justicia con ejemplos sencillos que permiten un mejor entendimiento de los conceptos que se quieren dar a conocer

    Ultrasound Effectiveness of Steroid Injection for hand Psoriatic Dactylitis: Results from a Longitudinal Observational Study

    Get PDF
    Introduction: To assess clinical and ultrasound effectiveness of steroid injection (local treatment, LT) into the digital flexor tendon sheath for the treatment of psoriatic dactylitis compared to systemic treatment (ST) alone. Methods: In this observational, multicentre, prospective study, 88 cases of symptomatic hand dactylitis were evaluated clinically and sonographically by high-frequency ultrasound (US) probe in both greyscale (GS) and power Doppler (PD). The presence of flexor tenosynovitis (FT), soft tissue oedema (STO), peritendon extensor inflammation and synovitis was assessed (including DACtylitis glObal Sonographic—DACTOS—score) before treatment, at 1-month (T1) and 3-months (T3) follow-up. LT was proposed to all patients. Patients refusing LT were treated with oral NSAIDs. Patients continued the same baseline csDMARDs and/or corticosteroid therapy during the whole follow-up period. US response was defined for DACTOS score < 3 and US remission for DACTOS score = 0. Results: At T3 evaluation the ST group showed a significantly higher persistence (grade > 1) of FT and STO (p < 0.001 for all) and MCP synovitis (p = 0.001). US remission was achieved only in the LT group (at T3 31% vs. 0, p < 0.001). The percentage of patients with DACTOS < 3 was significantly greater in the LT group compared with ST group, at both T1 (49% vs. 5%, p < 0.001) and T3 evaluation (76% vs. 7%, p < 0.001). In multiple conditional logistic regression analysis, the only factor associated with US remission was LT (T3 odds ratio = 41.21, p < 0.001). Conclusions: US confirmed the effectiveness of steroid injection for dactylitis by demonstrating that it involves the resolution of extra-articular inflammation, in particular FT and STO

    Second harmonic generation response by gold nanoparticles at the polarized water/2-octanone interface: from dispersed to aggregated particles

    Get PDF
    Gold nanoparticles with a diameter of approximately 20 nm have been observed at the polarized water/2-octanone interface by the nonlinear optical technique of second harmonic generation. Electric field induced adsorption of the gold particles at this liquid/liquid interface is clearly observed and confirms that these are negatively charged. The process is quasi-reversible at high potential sweep rates, but aggregation at the interface is observed at slower sweep rates through the loss of the nonlinear optical signal. The time evolution of the second harmonic signal is also reported during potential step experiments. After a rapid increase due to adsorption, a continuous decrease in the nonlinear optical signal intensity is observed due to aggregation of the particles into large islands at the interface. Diffusion of these large islands at the interface was observed for a longer timescale through large signal fluctuations

    Single-molecule studies of the stringency factors and rates governing the polymerization of RecA on double-stranded DNA

    Get PDF
    RecA is a key protein in homologous recombination. During recombination, one single-stranded DNA (ssDNA) bound to site I in RecA exchanges Watson–Crick pairing with a sequence-matched ssDNA that was part of a double-stranded DNA molecule (dsDNA) bound to site II in RecA. After strand exchange, heteroduplex dsDNA is bound to site I. In vivo, direct polymerization of RecA on dsDNA through site I does not occur, though it does in vitro. The mechanisms underlying the difference have been unclear. We use single-molecule experiments to decouple the two steps involved in polymerization: nucleation and elongation. We find that elongation is governed by a fundamental clock that is insensitive to force and RecA concentration from 0.2 and 6 µM, though rates depend on ionic conditions. Thus, we can probe nucleation site stability by creating nucleation sites at high force and then measuring elongation as a function of applied force. We find that in the presence of ATP hydrolysis a minimum force is required for polymerization. The minimum force decreases with increasing RecA or ATP concentrations. We propose that force reduces the off-rate for nucleation site binding and that nucleation site stability is the stringency factor that prevents in vivo polymerization

    The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA

    Get PDF
    The DNA-binding protein RdgC has been identified as an inhibitor of RecA-mediated homologous recombination in Escherichia coli. In Neisseria species, RdgC also has a role in virulence-associated antigenic variation. We have previously solved the crystal structure of the E. coli RdgC protein and shown it to form a toroidal dimer. In this study, we have conducted a mutational analysis of residues proposed to mediate interactions at the dimer interfaces. We demonstrate that destabilizing either interface has a serious effect on in vivo function, even though a stable complex with circular DNA was still observed. We conclude that tight binding is required for inhibition of RecA activity. We also investigated the role of the RdgC finger domain, and demonstrate that it plays a crucial role in the binding of circular DNA. Together, these data allow us to propose a model for how RdgC loads onto DNA. We discuss how RdgC might inhibit RecA-mediated strand exchange, and how RdgC might be displaced by other DNA metabolism enzymes such as polymerases and helicases

    Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

    Get PDF
    Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy

    Replication Fork Reactivation in a dnaC2 Mutant at Non-Permissive Temperature in Escherichia coli

    Get PDF
    Replicative helicases unwind double-stranded DNA in front of the polymerase and ensure the processivity of DNA synthesis. In Escherichia coli, the helicase loader DnaC as well as factors involved in the formation of the open complex during the initiation of replication and primosomal proteins during the reactivation of arrested replication forks are required to recruit and deposit the replicative helicase onto single-stranded DNA prior to the formation of the replisome. dnaC2 is a thermosensitive allele of the gene specifying the helicase loader; at non-permissive temperature replication cannot initiate, but most ongoing rounds of replication continues through to completion (18% of dnaC2 cells fail to complete replication at non-permissive temperature). An assumption, which may be drawn from this observation, is that only a few replication forks are arrested under normal growth conditions. This assumption, however, is at odds with the severe and deleterious phenotypes associated with a null mutant of priA, the gene encoding a helicase implicated in the reactivation of arrested replication forks. We developed an assay that involves an abrupt inactivation of rounds of synchronized replication in a large population of cells, in order to evaluate the ability of dnaC2 cells to reactivate arrested replication forks at non-permissive temperature. We compared the rate at which arrested replication forks accumulated in dnaC2 priA+ and dnaC2 priA2 cells and observed that this rate was lower in dnaC2 priA+ cells. We conclude that while replication cannot initiate in a dnaC2 mutant at non-permissive temperature, a class of arrested replication forks (PriA-dependent and DnaC-independent) are reactivated within these cells
    corecore