996 research outputs found

    A Multiplexed, Many Point PDV

    Get PDF
    Author Institution: National Security Technologies, LLCSlides presented at the 5th Annual Photonic Doppler Velocimetry (PDV) Users Conference held at The Ohio State University, Columbus, Ohio, September 8-9, 2010

    P-P Total Cross Sections at VHE from Accelerator Data

    Full text link
    Comparison of P-P total cross-sections estimations at very high energies - from accelerators and cosmic rays - shows a disagreement amounting to more than 10 %, a discrepancy which is beyond statistical errors. Here we use a phenomenological model based on the Multiple-Diffraction approach to successfully describe data at accelerator energies. The predictions of the model are compared with data On the basis of regression analysis we determine confident error bands, analyzing the sensitivity of our predictions to the employed data for extrapolation. : using data at 546 and 1.8 TeV, our extrapolations for p-p total cross-sections are only compatible with the Akeno cosmic ray data, predicting a slower rise with energy than other cosmic ray results and other extrapolation methods. We discuss our results within the context of constraints in the light of future accelerator and cosmic ray experimental results.Comment: 26 pages aqnd 11 figure

    Considerations in Building and Fielding MPDV

    Get PDF
    Author Institution: National Security Technologies, LLCSlides presented at the 6th Annual Photonic Doppler Velocimetry (PDV) Workshop held at Lawrence Livermore National Laboratory, Livermore, California, November 3-4, 2011

    A strategy to characterize the LISA-Pathfinder cold gas thruster system

    Get PDF
    The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system

    In-flight thermal experiments for LISA pathfinder: simulating temperature noise at the inertial sensors

    Get PDF
    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations

    Free-flight experiments in LISA Pathfinder

    Get PDF
    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this `suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.Comment: 13 pages, 5 figures. Accepted to Journal Of Physics, Conference Series. Presented at 10th International LISA Symposium, May 2014, Gainesville, FL, US

    The LISA pathfinder mission

    Get PDF
    ISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

    Disentangling the magnetic force noise contribution in LISA pathfinder

    Get PDF
    Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board

    A noise simulator for eLISA: migrating LISA pathfinder knowledge to the eLISA mission

    Get PDF
    We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented

    COVIDiSTRESS diverse dataset on psychological and behavioural outcomes one year into the COVID-19 pandemic

    Full text link
    During the onset of the COVID-19 pandemic, the COVIDiSTRESS Consortium launched an open-access global survey to understand and improve individuals’ experiences related to the crisis. A year later, we extended this line of research by launching a new survey to address the dynamic landscape of the pandemic. This survey was released with the goal of addressing diversity, equity, and inclusion by working with over 150 researchers across the globe who collected data in 48 languages and dialects across 137 countries. The resulting cleaned dataset described here includes 15,740 of over 20,000 responses. The dataset allows cross-cultural study of psychological wellbeing and behaviours a year into the pandemic. It includes measures of stress, resilience, vaccine attitudes, trust in government and scientists, compliance, and information acquisition and misperceptions regarding COVID-19. Open-access raw and cleaned datasets with computed scores are available. Just as our initial COVIDiSTRESS dataset has facilitated government policy decisions regarding health crises, this dataset can be used by researchers and policy makers to inform research, decisions, and policy
    • …
    corecore