80 research outputs found
Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery
Anatomical knowledge of the structures to be targeted and of the circuitry involved is crucial in stereotactic functional neurosurgery. The present study was undertaken in the context of surgical treatment of motor disorders such as essential tremor (ET) and Parkinson's disease (PD) to precisely determine the course and three-dimensional stereotactic localisation of the cerebellothalamic and pallidothalamic tracts in the human brain. The course of the fibre tracts to the thalamus was traced in the subthalamic region using multiple staining procedures and their entrance into the thalamus determined according to our atlas of the human thalamus and basal ganglia [Morel (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa Healthcare Inc., New York]. Stereotactic three-dimensional coordinates were determined by sectioning thalamic and basal ganglia blocks parallel to stereotactic planes and, in two cases, by correlation with magnetic resonance images (MRI) from the same brains prior to sectioning. The major contributions of this study are to provide: (1) evidence that the bulks of the cerebellothalamic and pallidothalamic tracts are clearly separated up to their thalamic entrance, (2) stereotactic maps of the two tracts in the subthalamic region, (3) the possibility to discriminate between different subthalamic fibre tracts on the basis of immunohistochemical stainings, (4) correlations of histologically identified fibre tracts with high-resolution MRI, and (5) evaluation of the interindividual variability of the fibre systems in the subthalamic region. This study should provide an important basis for accurate stereotactic neurosurgical targeting of the subthalamic region in motor disorders such as PD and E
Inbound and outbound flow integration for cross-docking operations
We consider the optimization of the cross-docking operations at three INtermodal LOgistics Platforms (INLOPs) of a large European car manufacturer (ECM). The planning horizon is a week and the time bucket is a day. An inbound flow of products is gradually received over the week by truck from inland suppliers, and has to be loaded into containers which are then shipped to offshore production plants. The full content of a container must be available at the INLOP to enable its loading operations to start, hence temporary storage is needed. The objective is to minimize an inventory penalty, computed as the largest daily volume of temporary product storage observed over the planning horizon. The current practice at ECM is to first optimize the content of the inbound trucks and of the outbound containers independently, and then determine the loading day of each container to be shipped based on these fixed contents. We propose to integrate, within the same optimization framework, the decisions on both truck and container contents, which involve complex loading constraints related to the dimensions and weights of the products, with those on the scheduling of container loading. We model the resulting problem as a mixed integer linear program, and we develop a decomposition scheme for it, as well as a fix-and-optimize matheuristic. We perform extensive computational experiments on real instances provided by ECM. Results show that a combination of these two matheuristics is able to generate solutions that reduce the average inventory penalty by 40%.</p
Integrating workload smoothing and inventory reduction in three intermodal logistics platforms of a European car manufacturer
We consider the optimization of container loading at three intermodal logistics platforms (ILP) of a large European car manufacturer (ECM). The decisions focus both on the loading day of each container and on its filling with the products in inventory, which are gradually received over the week from inland suppliers. The objective is either to reduce the largest inventory level needed in the ILP, or to smooth the weekly workload. We develop a solution methodology that allows the handling of complex loading constraints related to dimensions and weight of the products. We model the problem as a mixed integer linear program and we develop a decomposition heuristic to solve it. We perform extensive computation tests on real instances provided by ECM. Compared with current industrial practices, our solutions yield an average improvement of 46.8% for the inventory reduction and of 25.8% for the smoothing of the workload. Our results highlight the benefit of jointly optimizing container loading and operations scheduling.</p
Anatomical and Technical Reappraisal of the Pallidothalamic Tractotomy With the Incisionless Transcranial MR-Guided Focused Ultrasound. A Technical Note
Background: MR-guided focused ultrasound (MRgFUS) offers new perspectives for safe and efficient lesioning inside the brain. The issue of target coverage remains primordial and sub-optimally addressed or solved in the field of functional neurosurgery.Objective: To provide an optimized planning and operative strategy to perform a pallidothalamic tractotomy (PTT) in chronic therapy-resistant Parkinson's disease (PD) with the technology of MRgFUS.Methods and results: Histological sections and maps from 6 human brain hemispheres were analyzed and outlines of the pallidothalamic tract on Myelin-stained sections were drawn and superimposed. We determined a standardized PTT target coverage characterized by 5 to 7 preplanned target lesion sub-units of 1.5 × 1.5 × 3.0 mm, which were placed using focal point displacements and shortest possible times, under thermal dose control.Conclusion: We hereby present our current approach to the MRgFUS PTT on the basis of a histological reappraisal and optimized heat application to the pallidothalamic tract in the H1 field of Forel
Radiological and Thermal Dose Correlations in Pallidothalamic Tractotomy With MRgFUS
Background: MR-guided focused ultrasound (MRgFUS) offers the possibility of safe and accurate lesioning inside the brain. Until now, most MRgFUS thermal applications have been based on temperature or energy protocols. Experimental studies support however an approach centered on thermal dose control.Objective: To show the technical feasibility and lesion size predictability of a thermal dose approach during MRgFUS pallidothalamic tractotomy (PTT) against chronic therapy-resistant Parkinson's disease (PD).Methods: MR and thermal dose data were analyzed in 31 MRgFUS interventions between January and December 2017 in patients suffering from chronic therapy-resistant Parkinson's disease (PD) using a standardized PTT target covered by 5 to 7 target lesion sub-units.Results: Good correlations were found between (1) the mean axial T2 lesion diameter intraoperatively and the mean 240 cumulative equivalent min at 43°C (240 CEM) thermal dose diameter (r = 0.52), (2) the mean axial T2 diameter 48 h post-treatment and the mean 18 CEM thermal dose diameter (r = 0.62), and (3) the mean axial T2 diameter intraoperatively and 48 h post-treatment (r = 0.62).Conclusion: Our current approach using a thermal dose steering for multiple target lesion sub-units could be reproduced in 31 interventions with a good lesion size predictability
Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery
Anatomical knowledge of the structures to be targeted and of the circuitry involved is crucial in stereotactic functional neurosurgery. The present study was undertaken in the context of surgical treatment of motor disorders such as essential tremor (ET) and Parkinson’s disease (PD) to precisely determine the course and three-dimensional stereotactic localisation of the cerebellothalamic and pallidothalamic tracts in the human brain. The course of the fibre tracts to the thalamus was traced in the subthalamic region using multiple staining procedures and their entrance into the thalamus determined according to our atlas of the human thalamus and basal ganglia [Morel (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa Healthcare Inc., New York]. Stereotactic three-dimensional coordinates were determined by sectioning thalamic and basal ganglia blocks parallel to stereotactic planes and, in two cases, by correlation with magnetic resonance images (MRI) from the same brains prior to sectioning. The major contributions of this study are to provide: (1) evidence that the bulks of the cerebellothalamic and pallidothalamic tracts are clearly separated up to their thalamic entrance, (2) stereotactic maps of the two tracts in the subthalamic region, (3) the possibility to discriminate between different subthalamic fibre tracts on the basis of immunohistochemical stainings, (4) correlations of histologically identified fibre tracts with high-resolution MRI, and (5) evaluation of the interindividual variability of the fibre systems in the subthalamic region. This study should provide an important basis for accurate stereotactic neurosurgical targeting of the subthalamic region in motor disorders such as PD and ET
- …