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Abstract

We consider the optimization of the cross-docking operations at three INtermodal LOgistics Plat-

forms (INOLPs) of a large European car manufacturer (ECM). The planning horizon is a week

and the time bucket is a day. An inbound flow of products is gradually received over the week by

truck from inland suppliers, and has to be loaded into containers which are then shipped to offshore

production plants. The full content of a container must be available at the INOLP to enable its

loading operations to start, hence temporary storage is needed. The objective is to minimize an

inventory penalty, computed as the largest daily volume of temporary product storage observed

over the planning horizon. The current practice at ECM is to first optimize the content of the

inbound trucks and of the outbound containers independently, and then determine the loading day

of each container to be shipped based on these fixed contents. We propose to integrate, within the

same optimization framework, the decisions on both truck and container contents, which involve

complex loading constraints related to the dimensions and weights of the products, with those on

the scheduling of container loading. We model the resulting problem as a mixed integer linear

program, and we develop a decomposition scheme for it, as well as a fix-and-optimize matheuristic.

We perform extensive computational experiments on real instances provided by ECM. Results show

that a combination of these two matheuristics is able to generate solutions that reduce the average
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inventory penalty by 40%.

Keywords: Logistics, cross-dock scheduling, matheuristic, fix-and-optimize.

1. Introduction

We model and solve an operations management problem encountered by a large European car

manufacturer (denoted here as ECM as a result of a non-disclosure agreement) which consolidates

product flows from inland suppliers to offshore production plants at INtermodal LOgistics Platforms

(INOLPs). Over a given planning horizon (from Monday to Friday in this work), the products,

which are collected by trucks at different supplier locations, are first unloaded and repacked at the

INOLP. The products are then immediately loaded into containers, or temporarily stored until a full

container content is available at the INOLP, hence allowing the loading operations to be launched. It

is assumed that the necessary products for all container contents are received by truck over the week,

hence allowing all planned container loading operations to take place. The containers are finally

sent by ship at the end of the week to offshore production plants, which are the INOLP clients.

We refer to this problem as the ECM Problem. Figure 1 illustrates the sequence of operations just

described.

Figure 1: Product flow in an INOLP.

Inbound truck transportation is subcontracted. As a consequence, the truck routes cannot be

modified, as they are contractually fixed for the long term. The complex routing subproblems

associated with the inbound trucks have been previously and independently solved by ECM. They

can typically be modeled as a Traveling Purchaser Problem (Boctor et al. 2003). However, the



INOLP managers can still decide which products should be collected on the truck routes.

Regarding the outbound side, a container can only be loaded after its full content has been delivered

to the INOLP. This entails temporary storage, which generates inventory costs at the INOLP.

Furthermore, high inventory levels may lead to an imbalanced workload since the stored products

will ultimately have to be loaded into containers in the last days of the week. Therefore, ECM aims

at minimizing, over a one-week planning horizon a penalty computed as the largest daily inventory

volume required at the INOLP. To this end, three different types of decisions are inherent to the

ECM problem: determining the contents of the trucks, that of the containers, and the loading day

of each container.

At the end of the week, the demand of each client, i.e., the requested quantity of each product type,

must be satisfied and loaded in its assigned containers. The products arriving on the inbound side

can be sent to any outbound client requesting them. Since the containers are all sent by boat at

the end of the week, the container loading sequence is unconstrained. Additionally, the number of

containers loaded per day is unlimited.

Loading problems at inbound and outbound sides are rather complicated since they involve three-

dimensional constraints (the three dimensions of the products are taken into account when loading,

and overlaying is forbidden), a total weight limitation (the total weight of all products loaded in

the same container cannot exceed 20 tonnes for the trucks and 22 tonnes for the containers), and

specific arrangements of packaged products in stacks. In the latter case, the position of the products

in a stack is constrained by its weight (for each product, there is weight limitation on the products

to be stacked above it). For an overview of the loading constraints tackled by ECM, see (Toffolo

et al. 2017), and, for an exhaustive overview and classification of common and practical loading

constraints, see Bortfeldt and Wäscher (2013).

Because of such complex loading constraints, reassigning a product from a truck or a container to

another one is not straightforward. Yet the problem is slightly simplified since the products are

packaged into standardized boxes, and the loading constraints concern the box types only, irrespec-

tive of the products they contain. The complete consideration of the set of loading constraints is

extremely complex, hence we restrict the solution space to product permutations between boxes of

the same type. While this simplification allows to control the size of the problem, it still gives rise

to a rich solution space to explore. Indeed, it has been observed that more than 70% of the boxes
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are filled with different products but with a weight variation of less than 10 kg, which precludes

any violation of the weight of a stack. Hence, starting from a feasible assignment of boxes to trucks

or containers, numerous different assignments of products to boxes are possible. As a consequence,

product permutations between boxes can be applied to optimize the truck or the container contents,

while ensuring that the loading constraints will be satisfied.

The current practice at ECM is to determine the loading day of each container over the planning

horizon, without revoking previously made decisions. Indeed, in a first phase, ECM uses standalone

optimization tools to independently determine the truck and container contents. These contents are

taken as inputs to a second phase dedicated to the scheduling of container loading operations. A

particular case of the ECM problem was investigated in Coindreau et al. (2019), in which the truck

contents are fixed and the decisions focus only on the loading day and the content of the containers.

Even if substantial reductions were already observed for the inventory penalty, our work aims at

extending the previous study by further integrating the decisions on the truck contents.

This paper makes the following scientific contributions. We introduce the ECM problem which

integrates the optimization of both inbound and outbound product flows with container schedul-

ing. To solve the ECM problem, we propose a mixed integer linear programming (MILP) model

as well as two matheuristics, namely a decomposition matheuristic (DM) and a fix-and-optimize

matheuristic (FOM). We perform extensive computational tests on the instances provided by ECM.

We demonstrate the inventory penalty reduction resulting from our integrated approach.

The remainder of this paper is organized as follows. Section 2 provides a survey of the related

literature. Section 3 introduces the MILP formulation of the ECM problem. Section 4 presents our

two matheuristics and Section 5 summarizes their performance on real and on generated instances.

Section 6 quantifies the gain achieved by our integrated approach with respect to the non-integrated

current practice. This is followed by conclusions and perspectives in Section 7.

2. Literature Review

We first review the cross-docking literature that shares some similarities with the ECM problem.

Next, we give an overview of matheuristics that are relevant for the present case, and we focus in

particular on FOMs.
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A cross-docking facility aims at consolidating inbound and outbound flows (here, from inland sup-

pliers to offshore production plants) by making, as much as possible, direct product transfers from

trucks to containers (Van Belle et al. 2012), hence avoiding excessive inventory at the logistic plat-

forms (which differs from warehousing). As in Buijs et al. (2014), we consider a single cross-dock

in a many-to-few network configuration, which means that the cross-dock under consideration is

linked to many suppliers (here up to a few thousand) but only to a few customers (here less than

20 customers per INOLP).

More specifically, the ECM problem shares some features of the truck scheduling in a cross-dock

(TSCD), for which a review can be found in Boysen and Fliedner (2010). In the TSCD, the unloading

and loading operations of the trucks are viewed as a set of jobs, as defined in the job scheduling

literature. The aim of the TSCD is to determine a sequence of inbound trucks arriving at the cross-

docking platform and a sequence of outbound containers that are then loaded, in order to minimize

a given objective, e.g., the makespan, as in Chen and Lee (2009) and Ye et al. (2018)). Whereas

in some cases, the product transfers can be done without any need for temporary product storage

(Boysen 2010), other situations require a temporary inventory (as for the ECM problem, momentary

storage is observed in Yu and Egbelu (2008)). Despite its similarities with cross-docking, the ECM

configuration precludes the use of the existing related methodologies. First, direct transfers of

products from trucks to containers cannot always take place in the INOLP due to the constraints

imposed on the scheduling of operations related to container loading. Indeed, it is required that

the whole content of a container be available at the INOLP before proceeding to its loading. This

creates an increased need for temporary storage that is rarely observed in standard cross-docking

configurations. Second, and in contrast with the TSCD, the content of the trucks and that of the

containers are modified during the optimization of the operations, and hence jobs can no longer be

defined by a set of products to be unloaded and then loaded, as is done, for example, in Bellanger

et al. (2013). Focusing solely on the inbound side, Serrano et al. (2017) consider the reassignment

of the content of inbound trucks in a container scheduling context. In contrast with the ECM

problem, a simplifying assumption is made by considering scalar loading constraints. To the best

of our knowledge, no existing work provides loading solutions that ensure the non-violation of the

complex loading constraints considered here and described in Toffolo et al. (2017). We refer to

Coindreau et al. (2019) for a more extensive review of related cross-docking problems.

Several contributions acknowledge the importance of integrating internal cross-docking decisions.
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Indeed, the cross-docking literature covers a large number of problems that are usually solved

sequentially (e.g., from a strategic, tactical, and operational point of views). For instance, Rijal

et al. (2019) show that simultaneously making decisions on truck scheduling and decisions on the

assignment of dock doors to inbound or outbound flows leads to cost savings as high as 10%. These

problems are usually solved sequentially, as dock doors are first assigned to inbound or outbound

flows (tactical decisions) and then trucks are scheduled on the resulting door assignment (operational

decisions). In the same vein, Tadumadze et al. (2019) show the importance of integrating the

decisions on truck scheduling with those concerning workforce planning. Other contributions analyze

the integration of cross-docking decisions with those concerning the supply chain. Among others,

Enderer et al. (2017) highlight the gain that can be obtained when integrating dock door assignment

with decisions concerning the routing of trucks. Despite the large number of papers that consider

integrated decisions in a cross-docking context, no existing contribution considers the full potential

that is offered by integrating decisions on both inbound and outbound flow scheduling with the

decisions on container loading, as proposed in the present paper.

In a recent paper, Coindreau et al. (2019) have proposed a decomposition matheuristic for a sub-

case of the ECM problem. We present below suitable types of matheuristics that can help tackle

the further complexity brought by the integration of decisions for the truck content, in addition

to considering those for the container content and container scheduling. Matheuristics typically

combine mathematical programming and heuristics (Jourdan et al. 2009). Among the wide existing

range of available matheuristics, FOMs (originally introduced by Gintner et al. (2005)) consist in

iteratively fixing a subset of decision variables and then let generic solver find solutions on a smaller

and simpler problem. Repeatedly fixing some variables and optimizing some others often allows to

outperform the direct use of a solver applied to the full set of variables. In particular, FOM has

been successfully applied to lot sizing (Sahling et al. 2009, Helber and Sahling 2010), timetabling

(Dorneles et al. 2014), and location-routing problems (Rieck et al. 2014). Recently, FOM has been

combined with generic metaheuristic frameworks such as variable neighborhood search (VNS) in

Della Croce and Salassa (2014) and in Chen (2015), or variable neighborhood descent (VND) in

Dorneles et al. (2014). These papers indicate that combining FOM with a metaheuristic outperforms

the use of FOM only.
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3. Mathematical formulation

Section 3.1 introduces the variables and sets related to the ECM problem. Section 3.2 presents

a MILP model for minimizing the proposed inventory penalty (i.e., the largest temporary storage

required over the week) by making decisions on the content of a given subset of trucks and containers.

Section 3.3 describes specific configurations of the MILP that are relevant for the ECM problem.

3.1. Sets, parameters and variables

The superscripts “(in)” and “(out)” refer to inbound and outbound, respectively. Furthermore,

“(nf)” and “(f)” refer to the set of trucks or containers for which the content is not fixed and fixed,

respectively.

Sets:

• T : set of time periods (i.e., days),

• C: set of clients,

• P : set of product types,

• S: set of suppliers,

• B: set of box types,

• I: set of inbound trucks, which contains the following subsets:

– I(nf): subset of trucks for which the content is not fixed and can therefore be optimized

with the MILP,

– I(f): subset of trucks for which the content is fixed,

– It: subset of trucks that arrive on day t ∈ T ,

– I
(nf)
t : subset of trucks that arrive on day t ∈ T , for which the content is not fixed,

– I
(f)
t : subset of trucks that arrive on day t ∈ T , for which the content is fixed,

• O: set of outbound containers, which contains the following subsets:

– O(nf): subset of containers for which the content is not fixed and can therefore be opti-

mized with the MILP,
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– O(f): subset of containers for which the content is fixed,

– Oc: subset of containers assigned to client c ∈ C,

– O
(f)
c : subset of containers assigned to client c ∈ C, for which the content is fixed,

– O
(nf)
c : subset of containers assigned to client c ∈ C, for which the content is not fixed.
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Parameters:

• dcp: demand (in units) of client c ∈ C for product type p ∈ P ,

• n(in)
ib : number of units of boxes of type b ∈ B transported in truck i ∈ I,

• n(out)
ob : number of units of boxes of type b ∈ B transported in container o ∈ O,

• πpi = 1 if truck i ∈ I visits the supplier that can provide product type p ∈ P , πpi = 0

otherwise,

• qpb: number of units of product type p ∈ P that can be transported in box type b ∈ B,

• q(out)
op : number of products of type p ∈ P sent by container o ∈ O(f),

• q(in)
ip : number of products of type p ∈ P delivered by truck i ∈ I(f),

• lpb: weight (in kg) of a box of type b ∈ B when filled with product type p ∈ P ,

• l(in): maximum allowed weight (in kg) that can be transported by a truck,

• l(out): maximum allowed weight (in kg) that can be transported by a container,

• hp: volume (in m3) of a product of type p ∈ P ,

• gp: number of units of product type p ∈ P available in the inventory at the beginning of the

week; due to various reasons (e.g., lot sizing or wrong orders), there is an initial inventory in

the INOLP that cannot be determined in the optimization process and is therefore taken as

an input (the magnitude of this initial inventory is detailed later in column V init of Table 2),

• M = max
o∈O

{∑
b∈B

qpb · nob
}

: a sufficiently large number needed for the linearization.

Decision variables:

• zibp: number of boxes of type b ∈ B assigned to product type p ∈ P in truck i ∈ I(nf),

• xobp: number of boxes of type b ∈ B assigned to product type p ∈ P in container o ∈ O(nf),

• yot = 1 if container o ∈ O is loaded on day t ∈ T ; yot = 0 otherwise,

• wopt: number of units of product type p ∈ P sent by container o ∈ O(nf) on day t ∈ T ,
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• upt: number of units of product type p ∈ P in stock on day t ∈ T before loading the containers,

• vpt: number of units of product type p ∈ P in stock on day t ∈ T after loading the containers,

• rpt: number of units of product type p ∈ P received on day t ∈ T ,

• spt: number of units of product type p ∈ P sent on day t ∈ T ,

• f : largest inventory-penalty value (in m3) encountered during the planning horizon.

3.2. Mixed integer linear programming formulation: Q(O(nf), I(nf))

We denote by Q(O(nf), I(nf)) the MILP formulation of the ECM problem for which the content of

the I(nf) trucks and the O(nf) containers can be revoked and optimized. The problem is stated as

follows:

minimize f (1)

subject to

f ≥
∑
p∈P

hp · vpt t ∈ T (2)

vpt = upt − spt p ∈ P , t ∈ T (3)

vp0 = gp p ∈ P (4)

upt = vp,t−1 + rpt p ∈ P , t ∈ T (5)

rpt =
∑
b∈B

∑
(i∈I(nf)

t |πpi>0)

qpb · zibp +
∑
i∈I(f)t

q
(in)
ip p ∈ P , t ∈ T (6)

spt =
∑

o∈O(nf)

wopt +
∑

o∈O(f)

q(out)
op · yot p ∈ P , t ∈ T (7)

∑
t∈T

yot = 1 o ∈ O (8)
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wopt ≤M · yot t ∈ T , o ∈ O, p ∈ P (9)

wopt ≤
∑
b∈B

qpb · xobp t ∈ T , o ∈ O, p ∈ P (10)∑
o∈O(nf)

c

∑
t∈T

wopt = dcp −
∑

o∈O(f)
c

mf
op c ∈ C, p ∈ P (11)

∑
b∈B

∑
p∈P

lpb · xobp ≤ l(out) o ∈ O(nf) (12)

∑
p∈P

xobp ≤ n
(out)
ob o ∈ O(nf), b ∈ B (13)

∑
p∈P |πpi>0

zibp ≤ n
(in)
ib i ∈ I(nf), b ∈ B (14)

∑
b∈B

∑
p∈P

lpb · zibp ≤ l(in) i ∈ I. (15)

∑
b∈B

zibp ≤ πip · n
(in)
ib i ∈ I(nf), p ∈ P (16)

Constraints (2) compute the largest amount of storage space required in the INOLP. Constraints

(3) (resp. (5)) compute the available inventory in the INOLP at the end (resp. at the beginning)

of the day. Constraints (4) fix the initial inventory in the INOLP at the beginning of the planning

horizon (i.e., the products that are not received during the week are assumed to be in inventory

at the beginning of the week). Constraints (6) compute the amount of products received on each

day at the INOLP. Constraints (7) compute the number of units of each product type sent on each

day. Constraints (8) prevent a container from being loaded multiple times. Constraints (9) impose

that products are sent on the loading day of a container. Constraints (10) limit the amount of

products sent by containers. Constraints (11) impose that the demand of each client is satisfied.

Constraints (12) and (13) (resp. (14) and (15)) define the loading constraints of the containers

(resp. of the trucks). More precisely, constraints (12) (resp. (15)) ensure that the weight of the

transported products does not exceed the container (resp. truck) capacity, and constraints (13)

(resp. (14)) ensure that the number of boxes transported in a container (resp. truck) does not

exceed the allowed limit. Last, constraints (16) forbid that a truck transports products delivered

by non-visited suppliers.
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3.3. Specific configurations of Q(O(nf), I(nf))

The following specific configurations are introduced.

• Q: configuration where the full content of both containers and trucks is optimized (i.e., O(nf) =

O and I(nf) = I),

• Qz: configuration where only the content of all the containers is optimized (i.e., the zibp

variables are fixed: O(nf) = O and I(nf) = ∅),

• Qx: configuration where only the content of all the trucks is optimized (i.e., the xobp variables

are fixed: O(nf) = ∅ and I(nf) = I),

• Qz(O(nf)): configuration where all truck contents are fixed (i.e., I(nf) = ∅) and the content of

a subset of containers (O(nf)) is optimized,

• Qx(I(nf)): configuration where all container contents are fixed (i.e., O(nf) = ∅) and the content

of a subset of trucks (I(nf)) is optimized,

• Qx,z: configuration where the decision making only focuses on the loading day of the containers

(i.e., O(nf) = ∅ and I(nf) = ∅); it corresponds to current practice at ECM, according to which

the content of the trucks and the containers is built in a pre-processing phase using two

independent optimization tools, and Qx,z is then solved “by hand” (i.e., in a constructive

fashion) by the decision maker.

Configurations Qz and Qx,z have been considered in Coindreau et al. (2019). Furthermore, as

considered in Coindreau et al. (2019), configuration Qz,t (resp. Qx,z,t) stands for the decomposition

of Qz (resp. Qx,z) that aims at maximizing the volume of products sent at the end of day t when

the content of the trucks (resp. the content of both trucks and containers) is fixed. It has been

shown in Coindreau et al. (2019) that Qx,z,t is equivalent to the multiple knapsack problem, which

is known to be a NP -hard (Puchinger et al. 2010).

Table 1 summarizes the above configurations. For each configuration, the decision sets and the fixed

variables are given. “×” indicates that the corresponding decision variables are taken into account.

In the decompositions aimed at optimizing the volume shipped when fixing the loading day of the

containers, the decisions concerning the loading operations of the containers are made on a subset
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of containers. Accordingly, “(×)” means that the decision variables are partially taken into account.

The first four configurations have been studied in Coindreau et al. (2019) and correspond to the

situations where the content of the trucks is fixed.

Table 1: Considered configurations of the ECM problem.

Configuration Fixed variables Decision variables

Truck content Container content Loading day

Qz Truck content × ×

Qz,t Truck content, loading day × (×)

Qx,z Truck and container content ×

Qx,z,t Truck and container content, loading day (×)

Q - × × ×

Qx Container content × ×

4. Matheuristics

Since neither Q nor Qz cannot be solved with CPLEX for the largest instances provided by ECM,

we propose two matheuristics capable of handling large and complex cases. First, we introduce DM

to solve configuration Q in Section 4.1. Section 4.2 details FOM, which aims at solving multiple

times Q(O(nf), I(nf)) with different selections of trucks and containers to be optimized. Section 4.3

proposes a matheuristic based on a combination of DM and FOM. Finally, Section 4.4 highlights

additional advantages for ECM to favor FOM over alternative solution methods.

4.1. Decomposition matheuristic (DM)

As discussed by Archetti and Speranza (2014), the key idea behind a decomposition matheuristic is

to divide the main problem into smaller subproblems that are easier to solve. Each subproblem is

then solved by mathematical programming.

To solve Q, we propose to sequentially optimize the content of the containers and then the content of

the trucks (i.e., solve Qz and then Qx). Coindreau et al. (2019) introduced a temporal decomposition

matheuristic (called TDM) to solve Qz. Each day, the container contents are reorganized so as to
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maximize the sent volume of products that is shipped. In other words, the configuration Qz,t is

solved from t = 1 to 5.

It turns out that Qx is easier to solve than Qz. Indeed, CPLEX is able to solve Qx for all ECM

instances within an hour. In contrast to Qx, Qz yields a much larger number of variables, since

decisions can be made on both the container contents and their loading day. Whereas Qz involves

the xobp variables for the container contents and the wopt variables for the products sent on each

day (the zibp variables being fixed), this configuration only considers the zibp variables for the truck

contents (the xobp variables being fixed and the wopt variables being deduced from the values of

xobp).

The proposed DM for solving Q is straightforward. It first solves Qz with TDM. It then solves Qx

with CPLEX (i.e., by optimizing the truck contents and taking as input the previously optimized

container-loading schedule and contents).

4.2. Fix-and-optimize matheuristic (FOM)

The FOM aims at optimizing the content of both the trucks and the containers by successively

considering different subsets of trucks and containers to be optimized. The pseudocode of FOM

is given in Algorithm 1. At each step, |I(nf)| trucks and |O(nf)| containers are randomly selected.

Q(O(nf), I(nf)) is then solved with CPLEX, and the provided solution is taken as input for the

next iteration (we propose to adaptively update the size of the I(nf) and O(nf) sets with Algorithm

2 below). Algorithm 1 takes as input an initial feasible solution s0, e.g., the one currently used

by ECM. It stops after ηmax iterations without improvement or after tmax minutes of execution

time (see the ‘While” loop). (σ, tMILP ) are the MILP parameters used to solve Q(O(nf), I(nf)) in

Step 2. More precisely, the MILP stops when the gap to optimality is below σ% or after tMILP

minutes of execution time. An initial pair of percentages (ρI1 < ρI2) (resp. (ρO1 < ρO2 )) is also given

as input for the proportion of trucks (resp. containers) to be optimized in Q(O(nf), I(nf)). Such

proportions are updated each η iterations of Algorithm 1 (see Step 4). We consider two different

values to be able to determine, during the execution of Algorithm 1, whether smaller percentages

(i.e., ρI1 and ρO1 ) or larger percentages (i.e., ρI2 and ρO2 ) should be favored for the next iterations (see

Algorithm 2 below). To evaluate the gain associated with the percentage (ρIi , ρ
O
j ) selected in Step 1,

Step 3 computes the achieved inventory penalty reduction ∆ij after η iterations and the associated

required execution time τij . Preliminary experiments (not reported here) have indicated that the
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tuning (η = 12, σ = 2%, tMILP = 10 minutes, ρI1 = 15%, ρI2 = 17%, ρO1 = 10%, ρO2 = 11%) is

efficient.

The local search framework, of which FOM is an extension, usually relies on the complete exploration

of the given neighborhood at each iteration. Here, setting σ = 0% (i.e., each subproblem is optimally

solved and the neighborhood at each iteration is completely explored) significantly worsens the

performances of the FOM (compared with the case where σ is non-null). Indeed, despite the fact

that a small gain could be achieved at each iteration when solving optimally each subproblem, the

computational effort required to prove the optimality of each subproblem significantly reduces the

number of iterations that are performed by FOM (up to three times less iterations performed when

σ = 0% compared with σ = 2%). Ultimately, σ = 2% appears to be a good trade-off between the

intensification and the diversification abilities of FOM.

In the same vein, to increase the efficiency of the intensification at each iteration, we compared

the two following cases: (1) selecting containers and trucks randomly and (2) selecting with higher

probability containers and trucks having a larger number of allowed permutations (e.g., the con-

tainers for which the set of products that could be transported is high). In the latter case, each

iteration leads to a greater improvement of the objective function but at the cost of an extensive

computational effort. As a result, the diversification ability of FOM is reduced, which ultimately

affects the efficiency of the algorithm. Consequently, the random approach for selecting containers

and trucks has been selected for the final experiments.
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Algorithm 1 Fix-and-optimize matheuristic (FOM)

Input: s0, (σ, tMILP ), (ηmax, tmax), (ρI1, ρ
I
2), (ρO1 , ρ

O
2 ), η.

Initialization: set l = 1; set ∆ij = 0 and τij = 0 (∀ i, j ∈ {1, 2}).

While (execution time < tmax) or (a solution improvement has been made in the last η iterations), do:

1. Select the set of trucks and the set of containers to optimize: choose randomly (i, j) (where i, j ∈ {1, 2}),

and select randomly |I(nf)| = dρIi · |I|e trucks and |O(nf)| = dρOj · |O|e containers.

2. Solve Q(O(nf), I(nf)) with CPLEX and let sl be the resulting solution.

3. Evaluate the performance of the selected (ρIi , ρ
O
j ): set ∆ij = f(sl)−f(sl−1) (where f(sl) is the inventory

penalty of sl) and add to τij the execution time required to solve Q(O(nf), I(nf)).

4. Periodically update the truck/container percentages: if (l mod η) = 0, update (ρI1, ρ
I
2) and (ρO1 , ρ

O
2 )

with Algorithm 2; re-initialize ∆ij = 0 and τij = 0, ∀ i, j ∈ {1, 2}.

5. Move to the next iteration: set l = l + 1.

Return: sl (i.e., the last generated solution).

Algorithm 2 aims at choosing the pairs of percentages that will be used for the next sequence of η

iterations of Algorithm 1 (see its Step 4). It takes as input the values of the percentages (ρI1, ρ
I
2)

and (ρO1 , ρ
O
2 ) used during the previous η iterations, as well as their associated inventory penalty

reductions (∆ij) and execution times (τij).

For each couple (ρIi , ρ
O
j ) (where i, j ∈ {1, 2}), Algorithm 2 first computes the improvement score

θij =
∆ij

τij
(in m3/minute) provided by Q(O(nf), I(nf)) (with I(nf) = dρIi · |I|e and O(nf) = dρOj · |O|e)

during the last sequence of η iterations of Algorithm 1. If no percentage configuration has improved

the solution (i.e., if θij = 0 ∀ i, j ∈ {1, 2}, case 1), it can either be due to the fact that the percentages

(ρI2, ρ
O
2 ) are too small (hence the solution space explored in Q(O(nf), I(nf)) is too narrow), or (ρI1, ρ

O
1 )

are too large (hence CPLEX cannot explore the solution space of Q(O(nf), I(nf)) within tMILP

minutes to find a better solution than the current one). Therefore, in that case, we move the

smaller percentage ρI1 (resp. ρO1 ) of trucks (resp. containers) to an even smaller value, and the

larger percentage ρI2 (resp. ρO2 ) to an even larger value.

When at least one percentage pair has allowed the MILP to improve the input solution, let (i?, j?) =

arg max
(i,j)∈{1,2}2

θij (break ties randomly). In case 2 (resp. case 4), corresponding to i? = 1 (resp.

j? = 1), as the smaller percentage ρI1 (resp. ρO1 ) of trucks (resp. containers) to be optimized has

yielded higher improvement score, we move the two percentages of trucks (resp. containers) to even

16



smaller values. Conversely, in case 3 (resp. case 5), corresponding to i? = 2 (resp. j? = 2), the

larger percentage ρI2 (resp. ρO2 ) of trucks (resp. containers) to be optimized has yielded higher im-

provement score, and we thus move the two percentages of trucks (resp. containers) to even larger

values.

Algorithm 2 Update of the percentages of trucks and containers to be optimized in Q(O(nf), I(nf))

Input: (ρIi , ρ
O
j ), ∆ij , τij , ∀ i, j ∈ {1, 2}.

Initialization:

• Set δI = ρI2 − ρI1 and δO = ρO2 − ρO1 .

• Compute the improvement score for (ρIi , ρ
O
j ): set θij =

∆ij

τij
, ∀ i, j ∈ {1, 2}.

If θij = 0 ∀ i, j ∈ {1, 2} (case 1), set: ρI1 = ρI1 − δI ; ρI2 = ρI2 + δI ; ρO1 = ρO1 − δO; ρO2 = ρO2 + δO.

Else Determine (i?, j?) = arg max
(i,j)∈{1,2}2

θij (break ties randomly).

If i? = 1 (case 2), set ρI2 = ρI1 and ρI1 = ρI1 − δI ;

If i? = 2 (case 3), set ρI1 = ρI2 and ρI2 = ρI1 + δI ;

If j? = 1 (case 4), set ρO2 = ρO1 and ρO1 = ρO1 − δO;

If j? = 2 (case 5), set ρO1 = ρO2 and ρO2 = ρO1 + δO.

Return: (ρIi , ρ
O
j ),∀ i, j ∈ {1, 2}.

4.3. Combined matheuristic (DM-FOM)

When the available execution time is larger than the run time of DM, we propose the following

combined matheuristic, referred to as DM-FOM. In a first phase, we launch DM. In a second phase,

we use the remaining available execution time to run FOM, taking the DM solution as an input

and further improving it. Whereas DM-FOM aims at solving configuration Q (i.e., both the truck

and container contents are optimized), TDM-FOM combines TDM and FOM in the same fashion

to solve configuration Qz (where |Inf | = 0, i.e., the truck contents are fixed).

4.4. Facilitated implementation of FOM

Additional advantages of FOMs were highlighted by Papageorgiou et al. (2018). In the context of the

ECM problem, FOM stands out from other matheuristics, and more generally from metaheuristics,
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by the fact that sustainability and simplified maintenance of the code is ensured by ECM, implying

that it is easier for the optimization team to manage one single MILP that relies on a general

purpose solver rather than a low level code that requires high maintenance. Furthermore, FOM

is able to handily adapt to new business settings since, it requires less effort to update one single

MILP rather than customized algorithms.

5. Computational experiments

The models were coded in C++ and CPLEX 12.10 was called to solve the induced MILPs. Com-

putations were launched on a 2.2 GHz Intel Core i7 with 16 Go 1600 MHz DDR3 of RAM memory.

The ECM problem is solved once a week. In accordance with ECM, it is therefore reasonable to

consider an overall execution time of 10 hours. However, for most of the experiments presented be-

low, an execution time of one hour was sufficient to obtain the presented solutions. In the following,

the percentage gap of the inventory penalty f1 with respect to f2 is computed as 100 · f1−f2f2
.

Section 5.1 describes the set of instances provided by ECM. We compare the solution methods in

Section 5.2; results for configurations Qz are given in Section 5.2.1 and results for Q in Sections

5.2.2 and 5.2.3. Configuration Qx is not treated here since it can be solved directly with CPLEX.

5.1. Test instances

Table 2 gives the characteristics of the 24 instances under study. The 17 first instances were provided

by ECM and are derived from three different INOLPs: V, G and M. The N instances were generated

to assess the stability of the matheuristics on more complex situations. The first column indicates

the name of the instances, columns 2 to 7 indicate the size of the sets introduced in Section 3.1.

“V sent” and “V init” give the volume of the sent boxes and the volume of the boxes located in the

inventory at the beginning of the week, respectively. The last two columns describe the size of

configuration Q for each instance: “Nb. Var.” (resp. “Nb. Const.”) gives the number of variables

(resp. constraints). We have removed from the model the variables that can only take a single value

(e.g., for instance M7, there are |O| × |B| × |P | ≈ 1010 xobp variables, but after variable elimination,

configuration Q involves less than six millions variables (see Coindreau et al. (2019) for more details

on this variable elimination procedure).
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Each instance Ni (i ∈ {1, . . . , 7}) has the same characteristics as its corresponding instance Mi,

except for the number of suppliers (which has been decreased by 30%) and for the number of

different boxes (which has been decreased by 50%). More precisely, on the one hand, 30% of the

suppliers were randomly replaced by another one in the remaining 70%. On the other hand, the

allowed weight variation for the boxes was increased to 50 kg instead of 10 kg (meaning that a box

can transport different products until the weight variation does not increase 50 kg). These newly

generated instances are used to evaluate the developed algorithms on more complex situations and

to evaluate the effect of these two parameters on the management of the INOLP. Indeed, decreasing

the number of suppliers and the number of boxes increase the complexity as in both cases, the

number of possible permutations between trucks and between containers become larger. Compared

with the M instances, the number of variables in the N instances is on average 18% higher (see

column “Nb. Var.”) and the number of constraints is on average 19% larger (see column “Nb.

Const.”).

5.2. Analysis of the performance of the proposed solution methods

We now proceed to the analysis of our matheuristics on the configurations Qz and Q.

5.2.1. Results on configuration Qz

In this section, we focus on configuration Qz involving only the decisions on the contents and on the

loading days of the containers. We benchmark FOM and TDM-FOM (both with |Inf | = 0, as the

truck contents are fixed) with respect to TDM. For Qz, Coindreau et al. (2019) showed that TDM

is able to find optimal solutions on the smaller instances V and G. For the larger instances M (n.b.,

the N instances were not considered in this seminal paper), TDM is able to find solutions exhibiting

a significant gain compared with the ECM current practice. We do not report the results for the V

and G instances as they are optimally solved with CPLEX and, starting from the ECM solutions,

FOM is able to find optimal solutions within five minutes. Recall that FOM and TDM-FOM are

limited to 10 hours of execution time.

Table 3 compares the results of TDM, FOM and TDM-FOM for the M and N instances. Columns

“Obj.” give the value of the objective function. “Time” indicates the time (in minutes) at which

TDM returned its solution. “% best” provides the percentage gap with respect the best found
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Table 2: Characteristics of the test instances.

Instance |O| |I| |P | |B| |S| |C| V sent V init Nb. Var. Nb. Const.

V1 28 48 326 206 151 17 1,681 634 12,031 14,107

V2 51 78 358 290 171 20 3,285 1,154 14,054 17,234

V3 49 67 424 315 190 21 2,915 898 16,554 20,492

V4 59 82 454 334 191 20 3,920 1,411 19,022 23,700

G1 67 98 1,181 616 544 8 4,462 1,098 119,238 166,937

G2 71 112 1,199 644 554 7 4,921 942 132,638 182,749

G3 68 89 1,353 575 572 8 5,131 1,341 161,969 218,955

G4 88 112 1,401 718 606 8 5,979 1,503 162,171 231,079

G5 80 122 1,548 605 646 8 6,110 18,92 243,688 315,456

G6 85 136 1,676 748 678 7 6,442 917 244,916 330,369

M1 383 677 6,564 999 542 17 78,399 15,392 3,283,199 4,382,861

M2 543 653 7,890 1,262 626 23 89,937 14,995 3,808,742 5,403,274

M3 644 903 7,865 1,226 568 22 105,082 14,933 4,372,938 6,234,108

M4 699 778 7,529 1,167 597 23 109,501 23,458 4,062,400 5,641,036

M5 623 741 8,349 1,159 608 23 106,073 14,211 4,923,679 6,754,536

M6 789 1,085 8,546 1,377 590 21 130,476 23,828 5,272,599 7,626,068

M7 829 1,104 8,649 1,387 597 22 142,679 26,115 5,883,213 8,577,182

N1 383 677 6,564 505 310 17 78,399 15,392 3,732,772 5,057,496

N2 543 653 7,890 682 344 23 89,937 14,995 4,592,790 6,542,114

N3 644 903 7,865 658 326 22 105,082 14,933 5,152,584 7,341,628

N4 699 778 7,529 622 338 23 109,501 23,458 4,796,172 6,764,057

N5 623 741 8,349 606 341 23 106,073 14,211 5,757,389 8,055,724

N6 789 1,085 8,546 764 333 21 130,476 23,828 6,288,690 9,073,930

N7 829 1104 8,649 773 337 22 142679 26,115 6,995,642 10,167,524
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inventory penalty, which is always returned by DM-FOM. The columns “% O(nf)” give the average

percentage of containers optimized at each iteration of FOM.

On the one hand, one can observe that the TDM solutions can be further improved by FOM during

the remaining available execution time. Indeed, FOM alone is able to outperform TDM on four out

of the 14 instances. On the other hand, TDM-FOM is able to improve the results of TDM by 1.5%

on average. Such improvements could not be achieved without the use of FOM, as different runs of

TDM always return the same solution. Finally, the “% O(nf)” values show that all instances do not

require the same average percentage of containers to be optimized at each iteration of FOM. For

example, large values are not appropriate for N7 because of the complexity resulting from its size

(on average 11.8% of the containers are optimized for FOM). In contrast, for the smaller instances

M3 and M5, much larger percentages of the containers are optimized (more than 20% for FOM).

These results highlight the importance of dynamically updating, during the execution of FOM, the

values of these percentages (see Algorithm 2).

Table 3: Results of Qz for TDM, FOM and TDM-FOM (M and N instances).

TDM FOM TDM-FOM

Instance Obj. Time[min] % best Obj. % O(nf) % best Obj. % O(nf)

M1 44,078 13 1.7% 43,326 18.1% 0.0% 43,474 15.5%

M2 46,435 34 0.9% 46,641 15.4% 1.3% 46,023 15.2%

M3 53,417 32 0.1% 53,371 23.0% 0.0% 53,417 11.7%

M4 48,581 28 0.0% 52,920 15.9% 8.9% 48,578 11.5%

M5 51,503 29 0.0% 51,517 22.3% 0.0% 51,503 11.7%

M6 56,889 71 2.0% 56,935 18.6% 2.1% 55,774 18.5%

M7 60,274 47 3.8% 59,069 15.4% 1.8% 58,052 15.5%

N1 38,495 17 4.3% 37,961 14.6% 2.9% 36,894 14.1%

N2 35,360 33 1.2% 36,521 15.9% 4.5% 34,939 14.2%

N3 37,329 34 0.2% 39,751 16.9% 6.7% 37,249 12.0%

N4 34,073 37 2.0% 40,103 11.9% 20.0% 33,409 13.4%

N5 39,448 38 0.5% 42,299 15.9% 7.8% 39,244 14.6%

N6 40,733 60 0.5% 46,735 13.8% 15.3% 40,526 11.2%

N7 34,520 100 4.9% 51,012 11.8% 55.1% 32,899 13.3%

5.2.2. Results of CPLEX, DM and FOM on small instances

For the V and G instances, Table 4 compares the results of DM and FOM with the optimal solutions

proven by CPLEX in the eponymous columns. The columns “Obj.” and “Time” are defined as above

(but the time is given in seconds). For DM and FOM, the column “% opt.” provides the gap with

21



respect to the optimal solution. The columns “% O(nf)” and “% I(nf)” give the average percentage

of containers and trucks optimized at each iteration of FOM, respectively (this will be commented

later). We observe that DM is faster than FOM, but the latter heuristic yields better solutions.

Indeed, for FOM, the average gap to optimality never exceeds 2% for each instance. Interestingly,

FOM requires on average 32% less execution time than CPLEX. The results of DM-FOM are not

reported for the V and G instances. Indeed, FOM already shows a good performance for these

smaller instances, and neither the objective nor the execution time are significantly improved by

DM-FOM.

Table 4: Results of Q for CPLEX, DM and FOM (V and G instances).

CPLEX DM FOM

Instance Obj. Time[s] Obj. Time[s] % opt. Obj. Time[s] % O(nf) % I(nf) % opt.

V1 691 1 694 <1 0% 692 4 24.1% 34.4% 0%

V2 1,229 24 1,229 1 0% 1,229 1 8.3% 11.7% 0%

V3 1,481 1 1,481 1 0% 1,481 8 24.5% 37.1% 0%

V4 1,727 22 1,727 1 0% 1,727 9 22.4% 31.0% 0%

G1 2,489 15 2,643 11 6% 2,536 86 26.3% 39.9% 2%

G2 2,421 156 2,590 12 7% 2,450 129 26.4% 40.2% 1%

G3 2,621 56 2,632 28 0% 2,624 79 24.7% 31.1% 0%

G4 3,339 249 3,406 17 2% 3,346 85 23.0% 32.0% 0%

G5 2,651 2,174 3,105 21 17% 2,705 338 26.1% 40.9% 2%

G6 3,246 500 3,404 25 5% 3,326 198 22.3% 35.0% 2%

5.2.3. Results of DM, FOM, and DM-FOM on large instances

Table 5 compares the results of DM, FOM and DM-FOM for the M and N instances. For DM, we

report the execution time (in minutes) in the column “Time”. The time is not reported for FOM

and DM-FOM since for these instances, the full 10-hour time budget is used. The column “% best”

provides the gap with respect to the solution value found by DM-FOM (which is always the best

solution). Finally, for both FOM and DM-FOM, we report the average percentage of trucks and

containers optimized at each iteration in columns “% O(nf)” and “% I(nf)”, respectively.

Table 5 highlights that DM-FOM allows to efficiently use the available 10 hours of execution time

and outperforms both DM and FOM. The average gap between DM and DM-FOM (resp. between

FOM and DM-FOM) is 17.7% (resp. 16.0%). DM turns out to be a powerful first phase for

the ECM problem: it demonstrates the importance of considering the problem characteristics to

find appropriate decomposition techniques. Here, maximizing the volume sent daily is particularly
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efficient and is one of the strengths of DM. DM is able to identify good solutions (within 21 minutes

of execution time for the smallest instance M1, and 345 minutes for the most complex instance N7)

and is therefore recommended as a warm start for FOM, as opposed to initially feeding FOM with

the ECM solution. The larger the instance, the less efficient is FOM and the more important it

becomes to use DM as a first phase for FOM: for instance M1, FOM alone improves by 26.9% the

results of DM whereas for N6, FOM alone improves DM results by 5.3%. Note that FOM does

not improve the DM results for N7, this is due to the fact for this instance DM provides a solution

for which the largest inventory the INOLP is close to the inventory observed at the beginning of

the week, hence few improvements could be made on that solution. It is interesting to note that

considering simultaneously the optimization of the truck and of the container contents is necessary

in order to be able to further improve the results returned by DM.

Additional experiments (not reported here) indicate that letting 10 hours of execution for DM only

(i.e., iteratively solving Qz and Qx for 10 hours) does not improve the solution found after one single

iteration of DM (i.e., solve Qz then Qx once). Indeed, decomposing the resolution with Qz followed

by Qx is efficient to quickly find a rather good solution, but cannot, in contrast to FOM, further

improve it. In this case, as the truck (or container) contents are always optimized to be suitable

to the container (or truck) contents given as input, reoptimizing always yields similar truck and

container contents.

The average gap between DM and DM-FOM is larger when solving Q than when solving Qz (on

average, it moves from 1.5% for Qz to 17.7% for Q). This indicates that DM is more efficient

on configuration Qz than on Q. Hence, when integrating the decisions on both the truck and

container contents with those on the container scheduling (i.e., configuration Q), FOM becomes an

essential tool. The average gap between FOM and DM-FOM is equal to 15.9%, highlighting again

the importance of considering the solution of DM as a warm start for FOM.

Tables 4 and 5 show how the values of the percentages of trucks and containers to be optimized

at each iteration of FOM adapt to the characteristics of the instances. Typically, the percentage

of optimized trucks is larger than the percentage of optimized containers. This stems from the

increased complexity of Qz compared with Qx. Furthermore, we observe that the larger is the

instance, the smaller is the percentage of trucks or containers to be optimized at each iteration of

FOM. The strength of FOM lies more in the number of performed iterations within the allowed

time rather than on the magnitude of the improvement achieved at each iteration.
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Introducing instances N allows us to test our algorithms on more complex cases (as highlighted in

Section 5.1, those instances exhibit larger solution spaces). We first notice that it takes twice as

long for DM to solve the N instances compared to the M instances. As for the M instances, FOM is

able to further improve the results provided by DM on the N instances. On average, FOM improves

by 22.1% the results of DM for the M instances and by 15.4% for the N instances. This difference

in the magnitude of improvement can be explained by the fact that less time budget is left to FOM

to work on the solutions provided by DM. Moreover, as the problem to be solved is more complex, a

larger amount of time is required to solve each subproblem and hence less iterations are performed

by FOM. Nevertheless, FOM and DM-FOM are able to efficiently solve the N instances, as shown

in Sections 5.2.3 and 6.3.

Table 5: Results of Q for DM, FOM and DM-FOM (M and N instances).

DM FOM DM-FOM

Instance Obj. Time[min] % best Obj. % best % O(nf) % I(nf) Obj. % O(nf) % I(nf)

M1 25,046 21 26.9% 19,741 0.0% 17.2% 26.9% 19,805 15.6% 22.1%

M2 36,653 44 26.3% 29,015 0.0% 16.5% 23.8% 30,241 15.6% 19.1%

M3 35,804 73 26.7% 28,265 0.0% 15.4% 20.4% 28,296 15.6% 19.1%

M4 37,295 54 26.5% 32,660 10.7% 16.2% 23.7% 29,490 15.9% 16.7%

M5 34,040 55 25.6% 27,109 0.0% 16.2% 26.5% 27,204 16.1% 21.3%

M6 41,517 125 10.7% 39,918 6.5% 13.4% 17.5% 37,499 11.6% 19.5%

M7 42,830 151 12.0% 44,595 16.6% 11.5% 18.2% 38,242 12.7% 18.0%

N1 18,380 22 17.3% 15,665 0.0% 16.0% 24.4% 15,704 15.7% 19.6%

N2 26,699 40 25.7% 23,462 10.5% 14.6% 23.4% 21,236 13.1% 21.6%

N3 22,443 118 16.9% 21,251 10.7% 14.2% 20.5% 19,194 14.4% 22.1%

N4 26,876 50 14.4% 26,997 14.9% 13.1% 19.0% 23,501 14.8% 24.1%

N5 26,154 55 28.2% 24,759 21.4% 14.1% 22.1% 20,398 12.9% 17.7%

N6 27,692 393 5.3% 35,018 33.1% 11.0% 17.2% 26,309 12.8% 18.9%

N7 26,376 345 0.0% 53,091 101.3% 10.6% 16.3% 26,376 11.5% 18.9%

6. Managerial insights

We now evaluate the potential gain in terms of inventory penalty offered to ECM when simulta-

neously considering both the truck and container contents in the optimization, together with the

loading day of the containers. In particular, we compare the results with those obtained in situa-

tions where only the decisions on the content of the trucks or the containers, or neither (which sets

for the current practice at ECM), are integrated with those on the scheduling of container loading

operations. In Section 6.1, we compare the returned optimal solutions for the V and G instances.
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Next, in Section 6.2, we compare the best found solutions for the M instances. Section 6.3 analyzes

the impact of a reduced number of suppliers and of a smaller box sets by comparing the M and N

instances. Section 6.4 summarizes the improvement potential achieved by our integrated approach.

6.1. V and G instances

Table 6 compares the obtained solutions for configuration Q (i.e., both the contents of the trucks

and the containers are optimized) with those achieved when (1) the content of the containers is fixed

(column “Qx”); (2) the content of the trucks is fixed (column “Qz”); (3) both the content of the

trucks and that of the containers are fixed (column “ECM” which corresponds to the configuration

Qx,z). The columns “Obj.” report the value of the optimal solution and the columns “Time” give

the time (in minutes) at which CPLEX returned the optimal solution. Columns “% (ECM)”, “%

Qz” and “%(Qx)” give the improvement percentage with respect to configuration ECM, Qz and Qx,

respectively. For example, the improvement achieved by configuration Q over configuration Qz is

displayed in column “% Qz” and is computed as f(Q)−f(Qz)
f(Qz) , where f(Qz) (resp. f(Q)) designates

the obtained inventory penalty when considering configuration Qz (resp. Q).

As already discussed in Coindreau et al. (2019), reconsidering the content of the containers during

the optimization of the container loading operations allows to significantly improve the solution

currently used at ECM (with an average improvement of 5% for the V instances and of 15% for the

G instances). The gain achieved is of the same magnitude when integrating only the decisions on the

content of the trucks in the optimization (with an average improvement of 17% for the V instances

and of 14% for the G instances). The main improvement is achieved when we consider simultaneously

the content of the trucks and containers together with the loading day of the containers. Compared

with the results obtained in Coindreau et al. (2019), the additional average improvement brought

by solving Q instead of Qz amounts to 16% for the V instances, and to 19% for the G instances.

Compared with the current practice at ECM, the average improvement achieved by optimizing both

on the truck and container contents is 20% for the V instances, and 31% for the G instances. For

these V and G instances, we recall that the largest execution time to find the optimal solutions with

CPLEX is 31 minutes.
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Table 6: Results of Q for the V and G instances.

ECM Qz Qx Q

Instance Obj. Time[min] Obj. Time[min] % (ECM) Obj. Time[min] % (ECM) Obj. Time[min] % (ECM) % Qz % Qx

V1 1,158 < 1 1,158 < 1 0% 695 < 1 -40% 691 1 -40% -40% -1%

V2 1,454 < 1 1,377 < 1 -5% 1,307 < 1 -10% 1,229 < 1 -15% -11% -6%

V3 1,710 < 1 1,631 1 -5% 1,484 < 1 -13% 1,481 1 -13% -9% 0%

V4 2,117 < 1 1,956 < 1 -8% 1,888 < 1 -11% 1,727 < 1 -18% -12% -9%

G1 3,292 < 1 2,801 1 -15% 3,144 1 -4% 2,489 2 -24% -11% -21%

G2 3,690 < 1 3,074 3 -17% 3,130 1 -15% 2,421 5 -34% -21% -23%

G3 3,517 < 1 2,943 1 -16% 3,141 1 -11% 2,621 1 -25% -11% -17%

G4 4,318 < 1 3,672 3 -15% 4,005 2 -7% 3,339 4 -23% -9% -17%

G5 4,843 < 1 4,172 5 -14% 3,450 4 -29% 2,651 31 -45% -36% -23%

G6 4,706 < 1 4,059 4 -14% 4,037 3 -14% 3,246 12 -31% -20% -20%

6.2. M instances

Table 7 presents, for the M instances, the best solutions obtained (computation details are provided

in Section 5) for the configurations depicted in Section 6.1. The columns of Table 7 correspond to

those of Table 6. When the time is not reported, this means that the algorithm used the entire

allowed 10 hours of execution time to obtain the achieved inventory penalty. The results for the N

instances are not reported here as this section aims at comparing our solutions with those currently

obtained by ECM. For these instances, Section 6.3 shows how the solutions are impacted by a

reduction of the number of suppliers and of different box types.

For these larger instances, and similarly to the smaller instances, Table 7 shows that optimizing

only the truck or the container contents leads to similar average improvement when compared to the

ECM current practice. The average improvement of Qz (resp. Qx) over ECM is 34% (resp. 29%).

The main improvement comes when considering all the decisions simultaneously (both the truck,

the container contents, and the container loading day). The average inventory-penalty reduction

when solving Q instead of Qz (as done in Coindreau et al. (2019)) is 37%. Compared with the ECM

current practice, the gain is up to 72%, with an average of 58%. Such observations confirm the

importance of integrating decisions on both the inbound and outbound sides at ECM’s INOLPs.

6.3. Impact of a reduced number of suppliers and box types

Table 8 compares the results for the M and N instances (we recall that instance Ni, i ∈ {1, . . . , 7},

has the same characteristics as instance Mi except for the number of suppliers and of box types,
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Table 7: Results of Q for the M instances.

ECM Qz Qx Q

Instance Obj. Time[min] Obj. % (ECM) Obj. Time[min] % (ECM) Obj. % (ECM) % Qz % Qx

M1 73,301 < 1 43,474 -40.7% 46,438 9 -36.6% 19,805 -73.0% -54.4% -57.4%

M2 56,530 < 1 46,023 -18.6% 44,221 7 -21.8% 30,241 -46.5% -34.3% -31.6%

M3 77,077 < 1 53,417 -30.7% 51,864 15 -32.7% 28,296 -63.3% -47.0% -45.4%

M4 71,518 < 1 48,578 -32.1% 52,972 8 -25.9% 29,490 -58.8% -39.3% -44.3%

M5 73,436 < 1 51,503 -29.9% 51,362 10 -30.1% 27,204 -63.0% -47.2% -47.0%

M6 93,518 < 1 55,774 -40.4% 72,754 28 -22.2% 37,499 -59.9% -32.8% -48.5%

M7 100,504 < 1 58,052 -42.2% 67,084 57 -33.3% 38,242 -61.9% -34.1% -43.0%

that have been decreased respectively by 30% and by 50%). Columns “M” (resp. “N”) provide the

value of the objective function for the M (resp. N) instance, each line corresponding to one single

instance ID. Columns “Impr. N” give the improvement achieved when considering the N instance

compared with the respective M instance.

The N instances allow to draw the attention on the potential advantage offered by reducing the

number of suppliers and the number of box types. Over all formulations (Qz, Qx, and Q), decreasing

these two numbers yields an average improvement of 30%. While these results have to be mitigated

by the fact that these reductions are hypothetical and could potentially not be implemented in

practice, they highlight the interest of working on the standardization and reduction of box types.

Table 8: Impact of the reduction on the number of suppliers and on the number of box types.

Qz Qx Q

Inst. ID M N Impr. N M N Impr. N M N Impr. N

1 43,474 36,894 17.8% 46,438 37,136 25.0% 19,805 15,704 26.1%

2 46,023 34,939 31.7% 44,221 41,852 5.7% 30,241 21,236 42.4%

3 53,371 37,249 43.3% 51,864 42,705 21.4% 28,296 19,194 47.4%

4 48,578 33,409 45.4% 52,972 48,508 9.2% 29,490 23,501 25.5%

5 51,503 39,244 31.2% 51,362 44,508 15.4% 27,204 20,398 33.4%

6 55,774 40,526 37.6% 72,754 64,723 12.4% 37,499 26,309 42.5%

7 58,052 32,899 76.5% 67,084 61668 8.7% 38,242 26,376 45.0%

6.4. Improvement potential

For each instance, any achieved inventory penalty at the INOLP lies between the inventory penalty

of the ECM solution and the inventory penalty observed at the beginning of the week (see Table 2

for the values V init of the volume of products stored at the beginning of the week). For instance
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M1, the initial inventory volume V init stored at the beginning of the week is 15,392 m3 and the

largest inventory volume f(Qx,z) observed in the current ECM solution is 73,301 m3. Any improving

solution lies within these two bounds and the maximum theoretical improvement potential for this

instance is 57,909 m3. Considering Qz allows a reduction of the largest storage volume to 43,783

m3, and the savings for ECM is 29,518 m3, which represents 51% of the maximum theoretical

improvement potential (when only direct product transfers would take place).

Figure 2 displays, for all instances and for both configurations Qz and Q, the achieved percentage

of the maximum theoretical improvement potential. Each bar represents an instance, and the bold

bar indicates the average for the V, G, and M instances. For each INOLP, Figure 2 highlights

the significant additional gain achieved when considering Q over Qz. It furthermore indicates that,

on average and for both configurations Qz and Q, the larger is the instance, the larger is the

achieved improvement in terms of inventory penalty. This shows that our solution methods can

take advantage of the increased potential for product exchange between trucks and containers in

larger instances.

V init f(Qx,z)90% 80% 70% 60% 50% 40% 30% 20% 10%

M
G

VQ

M
G
VQz

Figure 2: Percentage of the maximum theoretical improvement potential achieved by configurations Qz and Q.

7. Conclusions

We have modeled and solved an industrial problem that considers the scheduling and the product

assignment for both the inbound and outbound flows in a cross-docking platform. Whereas Coin-

dreau et al. (2019) integrated the decisions on the outbound container content with the scheduling

of their operations over the week, here we additionally included the decisions on the inbound truck

contents in the same optimization framework. Concerning the complex loading constraints that

affect both trucks and containers, we proposed an efficient formulation capable of quickly capturing

the feasibility of different contents, as well as to evaluate their quality. We were able to realize the
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significant improvement potential offered by the proposed integrated optimization framework for all

instances provided by the involved company ECM.

We have developed and compared two heuristics, namely a decomposition matheuristic (DM) and

a fix-and-optimize matheuristic (FOM). DM is faster but less efficient than FOM. The results are

better when both methods are combined. Computational experiments showed that, compared with

current industrial practice, allowing product reassignment from one container to another and from

a truck to another, can reduce the average required largest inventory volume by 58% for the large

instances and by 27% for the small ones. Moreover, compared with the situation where only the

content of the containers is included in the decision making, the integrated formulation allows an

additional average reduction of 37% for the large instances, and of 18% for the small ones. From a

managerial point of view, revoking the content of the trucks may be a more challenging task than

acting on those of the containers, as it involves third parties. However, this study clearly shows that

implementing such aspects has the potential of yielding a significant improvement with respect to

current practice and should therefore be considered.

Acknowledgement

This work was partly supported by the Canadian Natural Sciences and Engineering Research Council

under grant 2015-06189. This support is gratefully acknowledged. Thanks are due to the reviewers

for their valuable comments.

References

References

Archetti, C. and Speranza, M. G. (2014). A survey on matheuristics for routing problems. EURO Journal

on Computational Optimization, 2(4):223–246.

Bellanger, A., Hanafi, S., and Wilbaut, C. (2013). Three-stage hybrid-flowshop model for cross-docking.

Computers & Operations Research, 40:1109–1121.

Boctor, F. F., Laporte, G., and Renaud, J. (2003). Heuristics for the traveling purchaser problem. Computers

& Operations Research, 30(4):491–504.
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