

Citation for published version:
Coindreau, MA, Gallay, O, Zufferey, N & Laporte, G 2019, 'Integrating workload smoothing and inventory
reduction in three intermodal logistics platforms of a European car manufacturer', Computers and Operations
Research, vol. 112, 104762. https://doi.org/10.1016/j.cor.2019.104762

DOI:
10.1016/j.cor.2019.104762

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Jul. 2024

https://doi.org/10.1016/j.cor.2019.104762
https://doi.org/10.1016/j.cor.2019.104762
https://researchportal.bath.ac.uk/en/publications/11dd9c80-6183-4e02-b8dc-b878df933e65

Integrating workload smoothing and inventory reduction in three
intermodal logistics platforms of a European car manufacturer

Marc-Antoine Coindreaua, Olivier Gallaya,∗, Nicolas Zuffereyb,d, Gilbert Laportec,d

aDepartment of Operations, HEC, University of Lausanne, CH-1015 Lausanne, Switzerland

bGeneva School of Economics and Management, GSEM, University of Geneva, Uni-Mail, CH-1211 Geneva 4,
Switzerland

cHEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal H3C 3J7, Canada

dCentre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (CIRRELT),
Montréal, Canada

Abstract

We consider the optimization of container loading at three intermodal logistics platforms (ILP) of
a large European car manufacturer (ECM). The decisions focus both on the loading day of each
container and on its filling with the products in inventory, which are gradually received over the
week from inland suppliers. The objective is either to reduce the largest inventory level needed
in the ILP, or to smooth the weekly workload. We develop a solution methodology that allows
the handling of complex loading constraints related to dimensions and weight of the products. We
model the problem as a mixed integer linear program and we develop a decomposition heuristic to
solve it. We perform extensive computation tests on real instances provided by ECM. Compared
with current industrial practices, our solutions yield an average improvement of 46.8% for the
inventory reduction and of 25.8% for the smoothing of the workload. Our results highlight the
benefit of jointly optimizing container loading and operations scheduling.

Keywords: Logistics, intermodal logistics platforms, cross-docking, loading constraints, MILP,
decomposition heuristics.

∗Corresponding author
Email addresses: marc-antoine.coindreau@unil.ch (Marc-Antoine Coindreau), olivier.gallay@unil.ch

(Olivier Gallay), n.zufferey@unige.ch (Nicolas Zufferey), gilbert.laporte@hec.ca (Gilbert Laporte)
Published in Computers & Operations Research

1. Introduction

We consider the operational management of intermodal logistics platforms (ILP) of a large European
car manufacturer denoted by ECM because of a non-disclosure agreement. We refer to this problem
as the ECM problem. Over a given planning horizon (a week in this work, excluding the weekend),
each ILP consolidates product flows from inland suppliers to offshore production plants, which are
the ILP clients. Every day, products are unloaded from trucks and are then loaded into containers
which are sent to the clients by ship at the end of the week. The products not shipped at the end
of a day are stored and wait until the next day to be loaded on a container. Figure 1 illustrates
the sequence of operations at an ILP. It shows a product flow from trucks to an ILP, to containers,
ships to clients.

Figure 1: Product flows associated with an ILP.

The managers have to decide when to load each container in order to minimize the largest weekly
inventory space (f I) employed, or to smooth the workload activities (fW). Focusing on f I , it is
preferable to load the containers as soon as possible. Minimizing fW yield solution with approxi-
mately the same number of containers filled each day. The two objectives f I and fW are minimized
lexicographically, and the priority of an objective on the other depends on the considered ILP: the
ILPs with a loaded volume larger than 10,000 m3 per week focus on f I , whereas the smaller ILPs
focus on fW .

We assume that the number of containers loaded per day is not constrained and the sequence
of container loadings has no impact on the objective function. Each client can receive multiple
containers, but each container can only be sent to its assigned client. Products of the same type
are interchangeable among clients. The daily workload is measured as the volume of products
unloaded from the trucks and loaded into containers. The objective f I is measured as the largest
volume, over the week, of products remaining in the inventory at the end of a day. Regarding the
inbound side, the trucks gradually deliver over the week all products needed for the ILP clients.
The truck arrival days and their contents are considered as input data.

Concerning the outbound side, the client demand must be sent in containers by ship. A container
can only be loaded when its full content is available in the ILP inventory. A first decision is to
determine the loading day of each container, given that its content is fixed. Minimizing the number

2

of containers (by optimizing their contents) to ship all the demand is a difficult problem due to
the presence of complex loading requirements, which involve 3D constraints (each box has a 3D
shape and overlaying is forbidden in the containers), a total weight limitation (the total weight of
all boxes loaded in the same container cannot exceed 22 tonnes), and the arrangement of boxes in
stacks (the boxes are loaded in stacks and the range of allowed weights is limited by the height of
the boxes in the stack). For an overview of common loading constraints, see Toffolo et al. (2017).
The current practice at ECM consists of first optimizing the loading of the containers, and next of
computing a weekly schedule for the associated operations. In the present work, the loading and
the scheduling of the containers are optimized simultaneously through the minimization of f I or
fW .

As highlighted by Toffolo et al. (2017), the loading problem itself is rather complicated and cum-
bersome. ECM solves this problem by using a dedicated algorithm that minimizes the number of
containers (to ship the weekly demand) and satisfies the full set of 3D loading constraints. Therefore,
ECM provided us with a feasible initial assignment of products to containers, where the products
are packaged into boxes, and the boxes are loaded into containers. There are several product types
and different box types. Usually, various product types are eligible to be loaded in a box. However,
once loaded, a box can only contain a single product type to be determined. Starting from the
ECM box-to-container assignments, we propose to revoke the decisions concerning the allocation
of products to boxes. More precisely, we can modify the full content of each box with a tolerance
of 10 kg (hence precluding any violation of the weight of a stack), but not its dimensions. In other
words, we allow some permutations between the content of the boxes. Based on the employed real
data, we have observed that 70% of the boxes can contain different product types, which means
that the proposed permutation search space is likely to be large enough for the generation of very
different solutions and for exhibiting a significant optimization potential. This type of box-content
permutations allows us to keep tractable the high complexity related to container loading, this in
order to integrate it with container scheduling. This integration would be very cumbersome if we
were to consider the loading problem in its full complexity. The left part of Figure 2 depicts an
assignment of boxes to a container. In this example, there are three types of boxes: b1, b2 and b3.
The container is loaded with two boxes of type b1, five boxes of type b2 and three boxes of type b3.
The right part of the figure shows that each box of type b1 can hold either four products of type
p1 (with a total weight of 74 kg) or two products of type p2 (with a total weight of 71 kg).

We make the following scientific contributions. We propose a mixed integer linear programming
(MILP) model and a decomposition heuristic to solve the ECM problem. Using real data, we
compare our results with the current practice for three different ILPs, and we assess the benefits
of integrating container loading and container scheduling.

The remainder of the paper is organized as follows. Section 2 surveys the related literature. In
Section 3, after determining the complexity of the problem, we present the MILP, as well as three
decomposition strategies. Section 4 proposes two ways of eliminating variables from the MILP
formulation in order to reduce its size. The solution method is described in Section 5, followed in
Section 6 by computational experiments, where the efficiency of the proposed heuristic is assessed
by making comparison with optimal solutions and with current industrial practices. Conclusions
follow in Section 7.

3

Figure 2: Assignment of boxes to a container and assignment of products to a box.

2. Literature review

The ECM problem shares some similarities with cross-dock scheduling. As in cross-docks, the ILPs
act as consolidating points, the aim of which is to receive and unload an incoming flow of products
arriving by truck, and then to load these products into outbound containers after a sorting process
(Boysen and Fliedner 2010). Whereas in most of the cross-dock literature, the incoming products
are immediately reloaded, hence precluding the use of storage, in the ILPs, products may have to
be stored and wait at most until the end of the current week before being loaded into the containers.
This is due to the fact that the totality of the content of a container must be available in order to
launch the loading process. However, at a weekly level, all products received in the ILPs are sent
(i.e., it is not possible to decide to hold any item in inventory for additional weeks) and the final
storage at the end of the week is expected to be be null (like in classical cross-dock platforms at a
daily level). The following paragraphs review the contributions on cross-docking that are the most
related to the ECM problem.

According to the survey of Van Belle et al. (2012), most of the research on cross-docking has
been undertaken after 2004. Only the literature concerning operational decisions is relevant to our
study. Even though a number of papers that consider operational decisions share some specificities
with the ECM problem (e.g., scheduling outbound flows when all the requested products are in
inventory), their focus is usually on operational modeling, such as internal activities in the cross-
dock (Bellanger et al. 2013), truck-to-door assignment (determining at which door a truck must be
unloaded or loaded in order to minimize the movements in the cross-dock) (Enderer et al. 2017,
Maknoon et al. 2017), or combining cross-dock and vehicle routing to minimize routing costs while
satisfying internal constraints (Maknoon and Laporte 2017).

The ECM problem contains some features of the Truck Scheduling Cross-Dock (TSCD) problem,
for which a review can be found in Boysen and Fliedner (2010). The TSCD focuses on the synchro-
nization of inbound and outbound trucks to maximize the number of products that can directly be
loaded in outbound trucks (Buijs et al. 2014), ideally while avoiding storage (Boysen 2010). Yu and
Egbelu (2008) similarly consider a TSCD with storage considerations. As in the ECM problem,

4

the products arrive at the inbound doors from suppliers and are then sent by trucks to clients.
The products are also interchangeable. The main difference between the work of Yu and Egbelu
(2008) and ours lies in the fact that these authors consider only scalar constraints for the loading
of outbound trucks (i.e., the constraints only concern the total weight of the transported products,
but neither their size nor their position in the container is considered).

Serrano et al. (2017) studied a similar cross-docking platform, where temporary storage is allowed
between truck arrival and container loading. However, in contrast to the ECM problem, scalar
loading constraints are considered. The goal of the authors is to delay the minimum number of
inbound trucks so that all internal constraints of the cross-docking platform are satisfied (i.e.,
storage, repacking and sorting activities).

Smoothing the workload has already been considered as an objective by Ladier et al. (2014).
However, the context of their paper differs significantly from ours since the decisions involved
concern the workforce dimensioning at a strategic level and the scheduling of specific activities
during the day. As highlighted in (Merengo et al. 1999, Emde et al. 2010) in the context of
assembly line balancing, there exist various criteria for workload smoothing (e.g., minimize either
the sum of the divergences to the mean or the maximum divergence to the mean). In our situation,
the choice of minimizing the largest difference between the most loaded day and the least loaded one
results from discussions with ECM. Since the number of container-loading stations is fixed at the
ECM ILPs, any high daily workload results in overtime, and any low daily workload creates idle
times for some workers. Ultimately, the solutions obtained when minimizing the above-proposed
function are likely to be similar to those that would be obtained when minimizing the maximum
divergence with respect to the mean daily workload.

As highlighted by Toffolo et al. (2017), real-world multiple-container loading problems generalize
the 3D packing problem. Accordingly, the associated combinatorial optimization problems are
computationally complex due to the considered large set of specific constraints. As mentioned in
Section 1, these constraints do not only concern the weight and size of the boxes to be loaded
in the container, but also the specific way in which these boxes can be arranged into stacks and
layers. In general, the objective focuses on minimizing the total number of containers required for
packing the boxes. Container loading problems are most often solved using solution methods. In
particular, Toffolo et al. (2017) propose a two-phase metaheuristic, the first phase of which consists
of quickly generating a feasible assignment of the boxes to containers, which is then improved in a
second phase through diversification and intensification mechanisms. Whereas loading and routing
decisions have already been considered jointly (e.g., Gendreau et al. (2006)), no study seems to have
addressed the complex set of real-world loading constraints arising in our problem in the context
of optimizing the container-scheduling operations of a cross-dock. Here, we propose to integrate
container loading and container scheduling decisions in the following way: starting from a feasible
assignment of boxes to containers, we exploit the fact that some box types can transport different
product types. As a result, we are able to take advantage of the huge variety of feasible assignments
of products to containers while still satisfying the loading constraints.

3. Mathematical formulation

We discuss the complexity of the ECM problem in Section 3.1. In Section 3.2, we introduce the
sets, parameters and variables needed to describe the model. Next, we present in Section 3.3 a
quadratic formulation (Q) to accurately express the constraints and objectives. This formulation

5

is then linearized in Section 3.4. After discussing the size of the linear formulation (P), we propose
three decompositions, fixing either the day in (Pt) (Section 3.5), the container contents in (Px)
(Section 3.6), or both in (Pt,x) (Section 3.7).

3.1. Complexity of the problem

To determine the complexity of the problem, assume the following:

• The planning horizon is limited to one day. Then, fW is dropped and minimizing f I is
equivalent to maximizing the volume of the shipped products.

• The inbound trucks do not deliver all the demand during the limited planning horizon.

• The number of box types is equal to the number of product types (i.e., the content of the
containers and their volumes is an input data that cannot be modified).

The resulting subproblem consists of choosing which containers to load during the day in order to
maximize the shipped volume. The loading of a container is limited by the products available in
the ILP inventory. Moreover, not all containers can be loaded because the demand has only been
partially delivered. If there is only one product type, the subproblem is the Knapsack Problem,
i.e., maximize a utility function while satisfying a volume constraint (Pisinger 1997). Since there is
an inventory for each product type, this special case actually corresponds to the Multidimensional
Knapsack Problem (MKP) (Puchinger et al. 2010), i.e., maximize a utility function (which is the
shipped volume here) under multiple volume constraints (which correspond to the product avail-
ability here). This subproblem is described in Section 3.7. Since the MKP is NP-hard (Puchinger
et al. 2010), the ECM problem is also NP-hard.

3.2. Sets, parameters and variables

We now introduce our notations:

Sets

• T : set of time periods (i.e., days),

• C: set of clients,

• O: set of outbound containers,

• Oc ⊆ O: subset of containers assigned to client c ∈ C,

• P : set of product types,

• B: set of box types.

6

Parameters

• dcp ∈ N: demand (in units) of client c ∈ C for product type p ∈ P ,

• rpt ∈ N: number of units of product type p ∈ P received on day t ∈ T ,

• nob ∈ N: number of units of boxes of type b ∈ B transported in container o ∈ O,

• qpb ∈ N: number of units of product type p ∈ P that can be transported in box type b ∈ B,

• lpb ∈ R+: weight (in kg) of a box of type b ∈ B when filled with product type p ∈ P ,

• lM ∈ R+: maximum allowed weight (in kg) that can be transported by a container,

• ab ∈ R+: volume (in m3) of a box of type b ∈ B,

• hp = min
b∈B
{ab/qpb}: volume (in m3) of a product of type p ∈ P .

Decision variables

• xobp ∈ N: number of boxes of type b ∈ B assigned to product type p ∈ P in container o ∈ O,

• yot = 1 if outbound container o ∈ O is loaded on day t ∈ T ; yot = 0, otherwise,

• upt ∈ N: number of units of product type p ∈ P in stock on day t ∈ T before loading the
containers,

• vpt ∈ N: number of units of product type p ∈ P in stock on day t ∈ T after loading the
containers,

• spt ∈ N: number of units of product type p ∈ P sent on day t ∈ T ,

• wt ∈ R+: workload on day t (in m3),

• f I ∈ R+: largest inventory value (in m3) encountered during the planning horizon,

• fW ∈ R+: largest workload imbalance (in m3), i.e., largest difference between the most loaded
day and the least loaded one.

3.3. Quadratic linear programming formulation (Q)

ECM considers two objectives f I and fW , as mentioned in Section 1. These objectives are mini-
mized in a lexicographic fashion (i.e., the higher-level objective is first minimized, and the lower-level
objective is then minimized while constraining the first one at its best value). The priority of an
objective depends on the considered ILP.

Objectives

minimize f I (1)

minimize fW (2)

7

Over the planning horizon, objective (1) aims at minimizing the largest storage space used in
the ILP (f I), whereas objective (2) focuses on minimizing the workload imbalance (fW). Both
objectives are measured in m3.

Constraints ∑
t∈T

yot = 1 ∀ o ∈ O (3)∑
o∈Oc

∑
b∈B

qpb · xobp = dcp ∀ c ∈ C, p ∈ P (4)∑
b∈B

∑
p∈P

lpb · xobp ≤ lM ∀ o ∈ O (5)

∑
p∈P

xobp ≤ nob ∀ o ∈ O, b ∈ B (6)

spt =
∑
o∈O

∑
b∈B

qpb · xobp · yot ∀ p ∈ P , t ∈ T (7)

upt = vp,t−1 + rpt ∀ p ∈ P , t ∈ T (8)

vpt = upt − spt ∀ p ∈ P , t ∈ T (9)

vp0 ≥ 0 ∀ p ∈ P (10)

f I ≥
∑
p∈P

hp · vpt ∀ t ∈ T (11)

wt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
b∈B

∑
p∈P

ab · xobp · yot ∀ t ∈ T (12)

fW ≥ wt1 − wt2 ∀ t1, t2 ∈ T. (13)

Constraints (3) prevent a container from being loaded multiple times. Constraints (4) impose that
the demand of each client is satisfied. Constraints (5) ensure that the weight of the transported
products does not exceed the container capacity. Similarly, constraints (6) ensure that the number
of boxes transported in a container does not exceed the allowed limit. Constraints (7) compute the
amount of product type p ∈ P sent on day t ∈ T . Constraints (8) (resp. (9)) update the available
inventory in the ILP before (resp. after) loading containers on day t ∈ T . Constraints (10)
determine the initial inventory in the ILP at the beginning of the planning horizon (the products
that are not received during the week are assumed to be in inventory at the beginning of the week).
Constraints (11) compute the largest amount of storage space used in the ILP. Constraints (12)
compute the workload for day t ∈ T . Constraints (13) evaluate the gap between the heaviest and
lightest workloads over all days.

3.4. (P): Mixed integer linear programming formulation

We denote by (P) the linearized formulation of (Q) and by (P I) (resp. (PW)) formulation (P)
in which f I (resp. fW) is the objective. Additionally, (P I|W) (resp. (PW |I)) corresponds to
formulation (P) where f I (resp. fW) is minimized and fW (resp. f I) is constrained at its best-
known value. The variables zobpt are introduced to linearize the product xobp · yot. Formulation (P)
keeps the constraints of (Q) that do not involve the product xobp · yot (i.e., constraints (3–6, 8–11,
13)). In (P), constraints (7) and (12) become constraints (14) and (15), respectively. In addition,

8

constraints (16–18) are added to fix zobpt at its appropriate value (i.e., zobpt = 0 if yot = 0, and
zobpt = xobp if yot = 1). The constraints of the linearized model are then:

spt =
∑
o∈O

∑
b∈B

qpb · zobpt ∀ p ∈ P , t ∈ T (14)

wt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
b∈B

∑
p∈P

ab · zobpt ∀ t ∈ T (15)

zobpt ≤ nob · yot ∀ t ∈ T , o ∈ O, p ∈ P , b ∈ B (16)

zobpt ≤ xobp ∀ t ∈ T , o ∈ O, p ∈ P , b ∈ B (17)

zobpt + nob · (1− yot) ≥ xobp ∀ t ∈ T , o ∈ O, p ∈ P , b ∈ B. (18)

There are |O| · |P | · |B| · |T | variables zobpt in the linearization, i.e., more than 40 million for the
smallest instance and above 15 billion for the largest instance considered in this study (the exact
number of variables is given in Table 2 for all the instances provided by ECM). The size of the
proposed MILP precludes commercial solvers from finding solutions for the large instances, and
even from inputting the data. We therefore introduce some decompositions.

3.5. (Pt): decomposition of (P) for a given day t

Formulation (P) can be decomposed into subproblems (Pt) for each day t ∈ T . In (Pt), the variables
concerning the inventory (i.e., upt and vpt) are dropped and the other variables remain the same

(but the index related to day t ∈ T is removed). Some notations are also modified: u
(t)
p represents

the amount of product type p ∈ P available at the beginning of day t; O(t) ⊆ O represents the

subset of containers to load at day t ∈ T ; d
(t)
cp is the demand (in units) of client c ∈ C for product

p ∈ P not already loaded before day t ∈ T (since other containers can be already shipped in
previous days, and a part of the demand may be already satisfied); it replaces dcp in constraints
(4).

Regarding the objectives, fW is dropped when optimizing over a single day, and f I is equivalent
to maximizing the volume of products sent at the end of the day. At the end of Section 5.2, we
explain how (Pt) is used in the heuristic proposed to solve the ECM problem, and how fW can be
optimized a posteriori. The objective and constraints hence become:

maximize
∑

o∈O(t)

∑
p∈P

∑
b∈B

qpb · hp · zobp (19)

subject to
∑

o∈O(t)

∑
b∈B

qpb · zobp ≤ u(t)
p ∀ p ∈ P (20)

zobp ≤M · yo ∀ o ∈ O(t), p ∈ P , b ∈ B (21)

zobp ≤ xobp ∀ o ∈ O(t), p ∈ P , b ∈ B (22)

zobp + M · (1− yo) ≥ xobp ∀ o ∈ O(t), p ∈ P , b ∈ B. (23)

Objective (19) maximizes the volume sent at the end of the day. Constraints (4–6), on the assign-
ment of products to containers are kept. The inventory constraints (8, 9, 14) are replaced with (20)
which impose that the amount of products sent does not exceed the available inventory. Constraints
(16–18) which are linked to the linearization are modified into constraints (21–23).

9

3.6. (Px): decomposition of (P) for a given assignment x of products to boxes in containers

If the assignment of products to containers is known, like in the ECM current solution, the only
decisions concern the loading day of each container. We call this problem the Container Scheduling
Problem. It is related to a problem proposed by Larbi et al. (2011) in which a TSCD is considered
and the content of both inbound and outbound trucks are known. A subproblem (Px) is derived
from (P), where the decision variables xobp are fixed (e.g., those taken in a feasible solution, for
instance the solution used by ECM), mop =

∑
b∈B

xobp · qpb is an input that represents the number of

units of product p in container o ∈ O. The set B of boxes and the designation C of the clients are
no longer needed. As for formulation (P), the following problems can be considered:

(
P I
x

)
,
(
PW
x

)
,(

P
I|W
x

)
,
(
P

W |I
x

)
. With respect to formulation (P), the objectives remain the same. Constraints

(4–6), related to the assignment of products to boxes, become redundant. Constraints (3, 8–11,
13) remain unchanged; constraints (7), which compute the amount of shipped products, become
constraints (24); constraints (12), which set the workload, become constraints (25). The constraints
then become:

spt =
∑
o∈O

mop · yot ∀ p ∈ P , t ∈ T (24)

wt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
p∈P

mop · hp · yot ∀ t ∈ T. (25)

3.7. (Pt,x): decomposition of (Px) for a given day t

The model (Pt,x) uses the same formalism as (Pt) and (Px). For a given day t, (Pt,x) maximizes the

volume of containers loaded under the constraint of available inventory (u
(t)
p), as formulated below.

This model is equivalent to the MKP. Indeed, the objective is to choose the appropriate containers
to load in order to maximize the volume shipped at the end of the day, while imposing a capacity
constraint for each product type:

maximize
∑

o∈O(t)

∑
p∈P

mop · hp

 · yo (26)

subject to
∑

o∈O(t)

mop · yo ≤ u(t)
p ∀ p ∈ P. (27)

4. Elimination of variables

As already highlighted in Section 3.4, formulation (P) (as well as its decomposition (Pt)) involves
the variables xobp, the number of which increases with the cardinality of the sets O, B and P , which
yields a number of xobp variables so large that commercial solvers cannot even read the model (see
column |O| · |B| · |P | of Table 2 for an accurate evaluation of the number of variables xobp in (P)
and in its decompositions). In this section, we present a technique to fix the variables that can
only take a single value at optimality, thus allowing their removal.

10

4.1. Fixing variables to 0

The variable xobp counts the number of boxes of type b loaded with product of type p in container
o. If container o does not transport a box of type b (i.e., if nob = 0), then the value of xobp is forced
to zero for each product type p ∈ P . Similarly, if box type b cannot transport a product of type p
(i.e., qpb = 0) because of non-matching sizes, weight limitations or product requirements, then xobp
is forced to zero for each container o ∈ O. These fixed variables can therefore be dropped from
(P), thus reducing the size of the model. Let X = {xobp | nob · qpb > 0} be the set of variables that
have not been fixed to 0. Column “|X|” of Table 2 provides the cardinality of this set for the ECM
instances.

4.2. Single-value variables

A further reduction of X is achieved as follows. Formulation (P) looks for an optimal assignment
of products to containers under the constraint that each box type b can only transport a subset of
product types and that the assignment of boxes to containers is known (while satisfying complex
loading constraints). We can count the maximum number of items of a given product type p that can
be transported by the containers associated with each client c (i.e.,

∑
o∈Oc

∑
b∈B

nob ·qpb). If this number

is equal to the demand of client c, then the only way to satisfy this demand is to assign the products
to the boxes that can transport them. More formally, let X̃ = {xobp ∈ X |

∑
o′∈Oco

∑
b∈B

nob ·qpb > dcp},

where co is the client served by container o. The set of the non-fixed variables is X̃ ⊆ X. The
column “|X̃|” of Table 2 gives the size of set X̃ for the ECM instances.

4.3. Impact of variables elimination on the ECM instances

ECM operates three ILPs denoted by V, G and M. For each ILP, a representative set of data was
provided by ECM, which captures the essential characteristics and situations observed over the
past years. The ILPs V and G are very large, so that their storage space are not constraining, and
hence the main objective at these locations is fW . In contrast, f I is the main objective for the
ILP M since its large quantity of transiting products requires an important storage space, and the
restricted available space must be used efficiently. Table 1 provides the characteristics of the 17
ECM instances under study. Column |O| gives the number of containers to load during the week.
Column |B| (resp. |P |) indicates the number of different box types (resp. product types). Column
|C| gives the number of clients served by the ILP. Column “Nb. Boxes” (resp. “Nb. Products”)
gives the total number of boxes transported by the containers (resp. the total number of products
transiting in the ILP). Column “% Boxes” displays the percentage of transported boxes that can
receive a product different from the one carried in the ECM solution (within a tolerance of 10 kg
per box). I(sent) represents the total inventory volume (in m3) sent during the week (relative to
all the products in column “Nb. Products”), and I(init) represents the inventory level of the ILP
at the beginning of the week. In our instances, the products are either delivered during the week
by inbound trucks, or are carried in the inventory from a previous week, and are therefore already
available at the beginning of the week.

Table 2 provides the value of the product |O| ·|B| ·|P | for each instance (i.e., the number of variables
xobp). Column “|X|” (resp. “|X̃|”) indicates the size of set X (resp. X̃). Column “% non-fixed”
gives the percentage of variables that are not fixed. After the variables elimination process, the
resulting numbers of variables and constraints are presented in Table 3 for formulations (P), (Pt)

11

Table 1: Characteristics of the instances.

Instance |O| |B| |P | |C| Nb. Products Nb. Boxes % Boxes I(sent) I(init)

V1 28 166 326 17 377,211 1,323 70.7% 1,680 659

V2 51 192 358 20 417,207 2,175 72.3% 3,285 1,277

V3 49 210 424 21 613,650 2,147 63.4% 2,915 962

V4 59 222 453 20 751,305 2,967 77.0% 3,920 1,821

G1 67 429 1,181 8 1,491,701 5,080 78.0% 4,461 1,283

G2 71 445 1,199 7 1,578,173 5,668 77.2% 4,921 1,250

G3 68 447 1,343 8 1,585,825 6,703 84.0% 5,131 1,301

G4 88 495 1,401 8 1,956,969 6,517 78.3% 5,978 2,027

G5 80 499 1,548 8 2,333,344 8,477 85.2% 6,109 1,830

G6 85 507 1,676 7 2,370,924 8,656 83.6% 6,442 1,409

M1 383 799 6,564 17 20,476,895 51,230 97.3% 78,398 16,417

M2 543 893 7,890 23 21,644,192 58,210 97.2% 89,937 16,244

M3 644 864 7,865 22 24,671,883 68,764 97.0% 105,082 15,946

M4 699 862 7,529 23 21,090,036 68,806 96.8% 109,501 27,048

M5 623 895 8,349 23 24,078,054 67,561 97.0% 106,073 16,661

M6 789 896 8,546 21 30,928,572 84,073 97.2% 130,476 27,328

M7 829 905 8,649 22 35,282,299 93,403 97.0% 142,679 30,716

and (Px). Column “Nb. Var.” (resp. “Nb. Constr.”) indicates the number of variables (resp.
constraints).

12

Table 2: Number of variables in (P).

Instance |O| · |B| · |P | |X| |X̃| % non-fixed

V1 1,515,248 668 442 0.029%

V2 3,505,536 883 519 0.015%

V3 4,362,960 1,065 675 0.015%

V4 5,933,394 1,305 883 0.015%

G1 33,945,483 13,758 12,797 0.038%

G2 37,882,405 15,284 14,188 0.037%

G3 40,821,828 18,622 17,507 0.043%

G4 61,027,560 19,618 17,944 0.029%

G5 61,796,160 27,683 26,282 0.043%

G6 72,227,220 28,874 27,603 0.038%

M1 2,008,695,588 420,090 407,608 0.020%

M2 3,825,853,110 518,412 503,904 0.013%

M3 4,376,211,840 601,015 584,093 0.013%

M4 4,536,508,602 542,537 527,444 0.012%

M5 4,655,277,165 651,286 634,152 0.014%

M6 6,041,543,424 736,934 718,116 0.012%

M7 6,488,869,005 833,631 812,775 0.013%

Table 3: Sizes of the formulations (P), (Pt) and (Px) after the elimination of variables.

(P) (Pt) (Px)

Instance Nb. Var. Nb. Constr. Nb. Var. Nb. Constr. Nb. Var. Nb. Constr.

V1 7,683 22,122 913 11,870 5,030 5,274

V2 8,740 30,597 1,090 18,918 5,625 5,809

V3 10,656 36,231 1,400 21,692 6,605 6,863

V4 12,389 42,799 1,826 25,319 7,090 7,337

G1 94,833 249,206 25,662 77,830 18,050 18,993

G2 103,469 272,164 28,448 83,822 18,340 19,285

G3 125,528 325,399 35,083 95,072 20,485 21,586

G4 129,120 346,550 35,977 110,089 21,455 22,534

G5 181,313 471,492 52,645 132,778 23,620 24,878

G6 191,184 495,888 55,292 139,397 25,565 26,931

M1 2,546,024 6,637,545 815,600 1,647,376 100,375 105,437

M2 3,144,490 8,352,285 1,008,352 2,186,514 121,065 126,813

M3 3,625,754 9,617,999 1,168,831 2,490,234 121,195 126,514

M4 3,281,095 8,809,257 1,055,588 2,366,265 116,430 121,193

M5 3,933,263 10,396,752 1,268,928 2,661,040 128,350 134,237

M6 4,440,832 11,796,494 1,437,022 3,050,093 132,135 137,555

M7 5,010,531 13,272,220 1,626,380 3,388,326 133,880 139,243

13

5. Methodology

We now describe two heuristics as well as the computation of lower bounds on f I . The first heuristic
is a greedy algorithm for the non-integrated version of the ECM problem (i.e., each container content
is known and cannot be revoked). The second heuristic minimizes f I or fW while making decisions
on both the loading of containers and on their loading day.

5.1. Heuristic for formulation (Px)

The current practice at ECM complies with the following streamlined Algorithm 1. It starts from
a given assignment of products to containers, which is the output of a first optimization step at
ECM, and works day by day according to the level of products in inventory. Each day, containers
are loaded as soon as the associated products are available, and container loading stops when a
workload target is reached. For the subset of containers allowed to be loaded (i.e., for which the
required products are in the inventory), various rules for the selection of the first container to load
can be applied, which range from random selection to the consideration of specific characteristics
of the ILP. Below, we only evaluate random selection, but we discuss the interest of considering
specific rules in Section 6.4.1.

Algorithm 1 Greedy algorithm for (Px)

Input: Assignment of products to containers (xobp); initial inventory for each product p at the beginning of
the week (up0); inflow product delivery schedule (rpt).

For each day in the week, do

While there are containers allowed to be loaded and current workload is below average workload, do

(1) Choose a container: select a container from the set of containers allowed to be loaded.

(2) Load the selected container: remove the selected container from the list of containers to load and
update the resulting inventory in the ILP.

(3) Update the set of allowed containers.

5.2. Heuristic for large instances

For those instances that are too large to be solved by commercial solvers, we describe in Algorithm
2 a heuristic based on the decomposition (Pt). Each day, based on the available inventory, the
shipped volume is maximized. At the end of the day, the demand, the available products, and
the list of non-loaded containers are updated. The strength of this heuristic lies in the fact that
it allows decision makers to load containers based on past and present information only, without
using forecasts on future product arrivals. As a result, the output of this algorithm is robust even
though some suppliers do not deliver some products on their expected day. The overall computation
time is proportional to the length of the planning horizon, since Algorithm 2 works day by day.
Furthermore, at each step (i.e., every day) of the algorithm, the number of variables and constraints
in (Pt) is smaller than the numbers reported in Table 3. Indeed, for the early steps, the cardinality
of P becomes smaller since only a subset of products have been received. For the later steps, the
cardinality of O also becomes smaller since many containers have been already shipped.

14

Algorithm 2 focuses on f I , but it can easily be adapted to tackle fW . Indeed, in addition to the
loading day of each container, Algorithm 2 returns an assignment of products to containers that
aims at maximizing the volume of product sent at each step t (day). To smooth the workload, the
loading of some containers can simply be delayed. This can be achieved by solving (PW

x), with the
product-to-box assignment returned by Algorithm 2.

Algorithm 2 Heuristic to minimize the largest inventory

Input: Assignment of boxes to containers (nob); initial inventory for each product p at the beginning of the
week (up0); inflow product delivery schedule (rpt); client demand (dcp).

For day t = 1 to 5, do

(1) Solve (Pt).

(2) Fix variables: move products from the inventory to the containers, with respect to (Pt).

(2) Update data: remove the loaded containers and update the available inventory and the client demand.

5.3. Lower bound on f I

Considering a cumulative inventory for each day (i.e., the sum of all products received), we can
compute the largest volume that can be shipped at the end of day t ∈ T . This yields an upper
bound on the largest volume in inventory at the end of each day, and therefore a lower bound LBI

on f I . This bound is formally computed based on the difference between the cumulative volume

(I
(c)
t = I(init) +

∑
t′≤t

∑
p∈P

hp · rpt′) of products in stock at the beginning of day t, and the largest

volume f(Pt) that can be sent at the end of day t. The value of LBI is then

LBI = max
t∈T
{I(c)

t − f(Pt)}. (28)

The bound LBI is used to evaluate – a posteriori – the quality of the solutions returned by Algorithm
2. Unfortunately, the computing time required to compute LBI is of the same order of magnitude
as the computing time required to perform Algorithm 2. Indeed, to compute LBI , we need to
solve five times formulation (Pt), which is similar to what is performed in Algorithm 2. If we first
compute LBI , and we next perform Algorithm 2 tightened by LBI , this will not reduce the overall
computing time.

6. Computational results

Section 6.1 introduces some notation needed to understand our numerical experiments. Section
6.2 compares, qualitatively, the different optimization approaches that can be applied to the ECM
problem, which vary with respect to their degree of integration. Section 6.3 details the values of
the optimal solutions for the V and G instances, which have a tractable size for CPLEX (see Table
3 for the size of the formulation after eliminating variables). Moreover, the output of Algorithm
2 is compared to these optimal values. Section 6.4 compares our results with the ECM current
practice on all instances.

15

The formulations and all the heuristics were coded in C++. The solver is CPLEX 12.4 and is called
with the concert technology. Computations were launched on a 2.2 GHz Intel Core i7 with 16 Go
1600 MHz DDR3 of RAM memory.

6.1. Notation

We use the formalism f(ind)(Form). The index ind indicates the solution method. More precisely,
ind = h if our heuristic (i.e., Algorithm 2) is applied, whereas ind = g if the current-practice greedy
heuristic (i.e., Algorithm 1) is employed. Form indicates the formulation (see Section 3.4), among
(P), (P I), (P I|W), (PW |I), (P I

x) and (PW
x). In both (P I

x) and (PW
x), the assignment of products

to containers is fixed as in the ECM current solution. f?(Form) refers to the optimal solution of
formulation Form. Tables (4–6) provide the execution times in minutes. Gaps are expressed in
percent. The percentage gap between f(h)(P

I) and f?(P I) is denoted as %f?(P I), and is computed

as
f(h)(P

I)−f?(P I)

f?(P I)
· 100.

6.2. Comparison of the various optimization approaches

For objective f I and for any instance, Figure 3 shows the expected ranking of the values LBI ,
f?(P I), f(h)(P

I), f?(P I
x) and f(g)(P

I
x). We use a uniform step size between each pair of values,

since initially we have no quantitative insight. The grey and black rectangles highlight the benefits
of the main approaches. The rectangle “Non-integrated method” indicates the range of values
that can be obtained when the container content is fixed: f?(P I

x) is the value of the optimal non-
integrated solution. The rectangle “Integrating loading constraints” covers the solution values that
can be reached in the case of a full, accurate but cumbersome, integration of the loading constraints
to the container scheduling problem. The rectangle “Revoking products to boxes” shows where our
results are expected to lie: f(h)(P

I) sets for the best-known solution value. More precisely, the

difference between f?(P I
x) and f?(P I) corresponds to the largest achievable gain ensuring the non-

violation of the loading constraints. Depending on the rule used to select the containers to be loaded
each day, Algorithm 1 can be more or less efficient. Because the ECM practice of selecting the
containers involves an experience-based understanding of the ILP that is hard to replicate, we use
a random container selection for an estimation of the ECM results. Therefore, any current-practice
solution value lies between f?(P I

x) and f(g)(P
I
x) (see the rectangle “Current practice”). The actual

size of each rectangle of Figure 3 will be discussed in Section 6.4.2, relying on Figure 4.

Integrating loading constraints

Revoking
products to boxes

Non-integrated method

Current
practice

I(sent)f(g)(P
I
x)f?(P I

x)f(h)(P
I)f?(P I)LBII(init)0

Figure 3: Comparison of the expected fI -gains of the various approaches.

6.3. Optimal results for the V and G instances

Table 1 indicates that instances V and G are at least 10 times smaller than instances M. These
much smaller sizes mean that these instances can be solved optimally by CPLEX with formulation

16

(P). While in these two cases fW is the main objective, Table 4 gives the optimal values for both
f I and fW , and presents a comparison with Algorithm 2 for both objectives f I and fW . The value
of the second objective is also provided in columns “f?

(
P I|W)” and “f?

(
PW |I)”.

Algorithm 2 returns an optimal solution in 17 of the 20 cases. Considering f I , we obtain a low
gain when the loading of a container allowed to be loaded on a given day is postponed by one
day. In other words, it is preferable to load the containers as soon as possible. In addition, the
objectives f I and fW may conflict. It may indeed be preferable not to load the containers early
and to spread the work over the less busy following days. For example, in instance G4, the optimal
value f?(PW) for the largest workload imbalance is 2,341 m3 and the associated required largest
storage space is 3,827 m3. When decreasing the storage space to its optimal value f?(P I) (i.e.,
3,745 m3), the difference between the most and least busy days (f?(PW |I)) increases to 2,699 m3.
Since the workload also takes into account the unloading of inbound trucks, if many of them are
unloaded during a specific day, it is preferable to delay some container loadings in order to smooth
the workload.

Table 4: Optimal results for the V and G instances, and performance of Algorithm 2.

Formulation (PW) Formulation (P I) Algorithm 2

Instance f?(PW) f?(P I|W) Time f?(P I) f?(PW |I) Time f(h)(P
W) Time %f?(PW) f(h)(P

I) %f?(P I)

V1 893 1,260 < 1 981 1,237 < 1 893 < 1 0.0% 982 0.1%

V2 1,579 1,922 < 1 1,246 1,960 < 1 1,579 < 1 0.0% 1,246 0.0%

V3 1,669 2,060 < 1 1,546 1,976 < 1 1,669 < 1 0.0% 1,546 0.0%

V4 2,233 2,715 < 1 1,894 2,690 < 1 2,233 < 1 0.0% 1,894 0.0%

G1 2,756 2,679 1 2,679 2,756 10 2,756 < 1 0.0% 2,679 0.0%

G2 1,508 3,182 13 3,076 1,718 6 1,508 < 1 0.0% 3,076 0.0%

G3 3,357 3,642 < 1 2,977 4,022 5 3,357 < 1 0.0% 2,977 0.0%

G4 2,341 3,827 14 3,745 2,699 12 2,479 < 1 5.8% 3,745 0.0%

G5 3,060 4,061 13 3,966 4,118 9 3,060 < 1 0.0% 3,968 0.1%

G6 3,204 4,603 13 4,065 3,345 1 3,204 < 1 0.0% 4,065 0.0%

6.4. Comparison with current practice

In Sections 6.4.1 and 6.4.2, we compare the best-known solution values for (PW) and (P I) with the
output of Algorithm 1 and with the optimal solution values of (PW

x) and (P I
x) (i.e., an estimate of

the values observed in practice). Only those results concerning the main objective are considered
for the comparison (i.e., fW for instances V and G, f I for instances M), since no additional insight
can be gained from the conflict between the two objectives.

6.4.1. fW -values for instances V and G

Table 5 compares the optimal solution values f?(PW) for formulation (PW), the optimal solution
values f?

(
PW
x

)
for formulation (PW

x) (when the container contents are fixed by ECM), and the
output f(g)(P

W) of Algorithm 1 (which estimates the ECM results). The gaps between the different

formulations with respect to f?(PW) and f?
(
PW
x

)
are expressed in the columns “% . . .”. We

observe that even if Algorithm 1 is fast (it requires less than a second of execution time), it delivers
results on formulation (PW

x) for which there is substantial room for further improvement. When

17

the containers content is fixed, the percentage gap between the values returned by Algorithm 1 and
the optimal values is on average of 16.8% for the V instances and of 12.6% for the G instances.
Algorithm 1 could be further improved (with respect to f?(PW

x)) with the use of more refined rules
for selecting the containers to load. This has not been investigated since the optimal solution values
for formulation PW

x are obtained within less than a minute with CPLEX. Table 5 also shows that
a substantial gain can be achieved by integrating the loading decisions in the container scheduling
problem (see column “%f?(PW)” under “Formulation (PW

x)”). Indeed, the average percentage gap
between (1) the optimal solution values of (PW

x) using the ECM current assignment of products
to containers, and (2) the optimal solution values of (PW), is on average 6.1% for the V instances
and 33.6% for the G instances. More generally, we observe that the average gain becomes larger
as the instance size increases. Indeed, the G instances involve a volume of handled products that
is on average five times larger than for the V instances.

Table 5: Results for the V and G instances (i.e., focusing on fW).

Formulation (PW) Formulation (PW
x) Current practice (Algorithm 1)

Instance f?(PW) Time f?(PW
x) Time %f?(PW) f(g)(P

W
x) Time %f?(PW

x) %f?(PW)

V1 893 < 1 893 < 1 0.0% 995 < 1 11.4% 11.4%

V2 1,579 < 1 1,671 < 1 5.8% 2,028 < 1 21.4% 28.4%

V3 1,669 < 1 1,758 < 1 5.3% 2,055 < 1 16.9% 23.1%

V4 2,233 < 1 2,445 < 1 9.5% 2,829 < 1 15.7% 26.7%

G1 2,756 1 3,407 < 1 23.6% 3,650 < 1 7.1% 32.4%

G2 1,508 13 2,122 < 1 40.7% 3,313 < 1 56.1% 119.7%

G3 3,357 < 1 4,397 < 1 31.0% 4,940 < 1 12.3% 47.2%

G4 2,341 14 3,125 < 1 33.5% 3,717 < 1 18.9% 58.8%

G5 3,060 13 4,152 < 1 35.7% 4,241 < 1 2.1% 38.6%

G6 3,204 13 4,469 < 1 39.5% 4,542 < 1 1.6% 41.8%

6.4.2. f I-values for instances M

Table 6 compares three approaches for minimizing f I , which is the main objective for the M in-
stances: the output f(h)(P

I) of Algorithm 2, the optimal results using the ECM current assignment

f?(P I
x) of products to containers, and the output f(g)(P

I) of Algorithm 1. The lower bound LBI

is also provided for each instance.

We observe from Table 6 that Algorithm 1 is very efficient for formulation (P I
x). Indeed, its

optimality gap never exceeds 2%. In other words, given a feasible assignment of products to
containers, only marginal gains can be achieved by using CPLEX to minimize the storage in the
ILP. As mentioned in Section 5.1, Algorithm 1 randomly selects the next container to load (see
step (1) of Algorithm 1). Therefore, using more refined selecting rules at step (1) could only yield
marginal gains (between 0.2% and 1.9%). We observe that for (P I

x), which is a more difficult
problem than MKP (see Section 3.6), both CPLEX with an execution time of less than a second,
and Algorithm 1, with an optimality gap below 2%, exhibit good performances. This can be
explained by the fact that the instances have a significant proportion (between 50% and 70%) of
the product types that can only be assigned to a single container. Therefore, the solution space of
these instances remains of tractable size.

18

As shown in Table 6, revoking the assignment of products to containers can lead to substantial
gains. Column “%f(h)(P

I)” under “Formulation (P I
x)” displays the gain found by revoking the

loading of containers (compared to the optimal solutions with the ECM current assignment of
products to containers). It lies between 26.6% and 72.5%. The average gap between the best-
known solution value and the best non-integrated solution value is 46.8%. Additionally, the lower
bounds presented in column “LBI” indicate that the output of Algorithm 2 is close to optimality,
except for one instance for which the optimality gap is 18.8%. We conclude that an algorithm that
would consider future information to schedule the containers (i.e., the inbound flows during the
next days) could only yield a marginal gain.

Table 6: Results for the M instances (i.e., focusing on fI).

Algorithm 2 (P I) Formulation (P I
x) Current practice (Algorithm 1)

Instance LBI f(h)(P
I) Time %LBI f?(P I

x) Time %f(h)(P
I) f(g)(P

I
x) Time %f?(P I

x) %f(h)(P
I)

M1 33,653 36,162 16 6.9% 62,399 < 1 72.5% 62,829 < 1 0.7% 73.7%

M2 42,980 44,465 29 3.3% 59,049 < 1 32.8% 59,314 < 1 0.4% 33.4%

M3 54,897 55,386 30 0.9% 75,727 < 1 36.7% 75,875 < 1 0.2% 37.0%

M4 49,313 50,751 32 2.8% 72,109 < 1 42.1% 72,296 < 1 0.3% 42.5%

M5 56,605 57,889 35 2.2% 73,294 < 1 26.6% 73,461 < 1 0.2% 26.9%

M6 53,614 56,191 41 4.6% 93,335 < 1 66.1% 93,843 < 1 0.5% 67.0%

M7 51,415 63,293 45 18.8% 98,630 < 1 55.8% 100,540 < 1 1.9% 58.8%

Figure 4 quantifies the qualitative aspects displayed in Figure 3 with the average values computed on
all M instances. It illustrates that the current practice offers very few improvement opportunities
when considering the used non-integrated approach (the rectangle “Current practice” is small
compared with the rectangle “Revoking product to boxes”). It also shows that the potential
improvement on our heuristic is small since the gap to the lower bound LBI is on average of 6.3%
over all instances. Finally, among the 97% of boxes for which a change of product assignment
is possible (average over all M instances, see Table 1), our solutions yield a box content that is
different from the one proposed by ECM for 64.8% of the boxes. In other words, our optimization
results yield very different container loading plans while satisfying all loading constraints.

I(sent)f(g)(P
I
x)

f?(P I
x)

f(h)(P
I)

LBI

I(init)0

Integrating loading constraints
Non-integrated

method

Revoking
product to boxes

Current practiceOptimal solution f?(P I)

Figure 4: Quantification of the expected fI -gains for various approaches (average values for all M instances).

19

7. Conclusions

We have modeled and solved a scheduling of outbound flows in an ILP under complex loading
constraints. This problem was proposed by ECM and is encountered in three of its ILPs. The aim
was to compute an improved schedule for the loading day of each container to either reduce the
largest required inventory space or the weekly workload imbalance.

To solve the problem, we have developed both an exact algorithm and a heuristic. Whereas the
exact approach is able to solve to optimality two thirds of the provided industrial instances, the
heuristic can efficiently tackle the remaining larger instances. Matching the industrial requirements
concerning the execution time (i.e., less than one hour), the heuristic returns results with an
optimality gap lower than 7% for 85% of the large instances. Furthermore, the heuristic allows
handling the uncertainty in the inbound flows. Indeed, when the suppliers do not exactly deliver
the products on their scheduled day, the heuristic can be relaunched based on the actual deliveries
without impacting its performance. Results show that compared with current practice, our heuristic
yields a 26% to 73% improvement in the inventory level, with an average of 46.8%. Similarly, an
average improvement of 25.8% was found for the smoothing of the workload. In other words,
substantial gains can be achieved for both objectives.

From a managerial point of view, the efficiency gains for the ILPs are achievable without involving
third-parties, since neither the suppliers nor the clients of the ILP are impacted by the considered
decisions (i.e., each product arrival day at the ILP remains the same and all the client demands are
covered at the end of the week). We have shown that optimizing only the container loading days
yields marginal gains. Indeed, if the container contents remain unchanged, a gain not exceeding
2% can be achieved on the largest required inventory space. In contrast, adapting the container
contents based on the inbound deliveries, while optimizing the loading day of the containers, helps
to significantly improve the objective value.

As a future avenue of research, we mention the integration of additional types of decisions. For
instance, one may also determine the arrival schedule of the inflow trucks and the allocation of
resources to the container loading platforms.

Acknowledgement

This work was partly supported by the Canadian Natural Sciences and Engineering Research Coun-
cil under grant 2015-06189. This support is gratefully acknowledged. Thanks are due to the
reviewers for their valuable comments.

References

References

Bellanger A, Hanafi S, Wilbaut C (2013) Three-stage hybrid-flowshop model for cross-docking. Computers
& Operations Research 40:1109–1121.

Boysen N (2010) Truck scheduling at zero-inventory cross docking terminals. Computers & Operations Re-
search 37(1):32–41.

20

Boysen N, Fliedner M (2010) Cross dock scheduling: Classification, literature review and research agenda.
Omega 38(6):413–422.

Buijs P, Vis IFA, Carlo HJ (2014) Synchronization in cross-docking networks: A research classification and
framework. European Journal of Operational Research 239(3):593–608.

Emde S, Boysen N, Armin S (2010) Balancing mixed-model assembly lines: a computational evaluation of
objectives to smoothen workload. International Journal of Production Research 48(11):3173–3191.

Enderer F, Contardo C, Contreras I (2017) Integrating dock-door assignment and vehicle routing with cross-
docking. Computers & Operations Research 88:30–43.

Gendreau M, Iori M, Laporte G, Martello S (2006) A tabu search algorithm for a routing and container
loading problem. Transportation Science 40(3):342–350.

Ladier AL, Alpan G, Penz B (2014) Joint employee weekly timetabling and daily rostering: A decision-
support tool for a logistics platform. European Journal of Operational Research 234(1):278–291.

Larbi R, Alpan G, Baptiste P, Penz B (2011) Scheduling cross docking operations under full, partial and no
information on inbound arrivals. Computers & Operations Research 38(6):889–900.

Maknoon Y, Laporte G (2017) Vehicle routing with cross-dock selection. Computers & Operations Research
77:254–266.

Maknoon Y, Soumis F, Baptiste P (2017) An integer programming approach to scheduling the transshipment
of products at cross-docks in less-than-truckload industries. Computers & Operations Research 82:167–
179.

Merengo C, Nava F, Pozetti A (1999) Balancing and sequencing manual mixed-model assembly lines. Inter-
national Journal of Production Research 37:2835–2860.

Pisinger D (1997) A minimal algorithm for the 0-1 knapsack problem. Operations Research 45(5):758–767.

Puchinger J, Raidl GR, Pferschy U (2010) The multidimensional knapsack problem: Structure and algo-
rithms. INFORMS Journal on Computing 22(2):250–265.

Serrano C, Delorme X, Dolgui A (2017) Scheduling of truck arrivals, truck departures and shop-floor op-
eration in a cross-dock platform, based on trucks loading plans. International Journal of Production
Economics 194:102–112.

Toffolo TA, Esprit E, Wauters T, Vanden Berghe G (2017) A two-dimensional heuristic decomposition
approach to a three-dimensional multiple container loading problem. European Journal of Operational
Research 257(2):526–538.

Van Belle J, Valckenaers P, Cattrysse D (2012) Cross-docking: State of the art. Omega 40(6):827–846.

Yu W, Egbelu PJ (2008) Scheduling of inbound and outbound trucks in cross docking systems with temporary
storage. European Journal of Operational Research 184(1):377–396.

21

