6,691 research outputs found

    Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons

    Full text link
    We investigate a linear sigma model with global chiral U(2)R×U(2)LU(2)_{R} \times U(2)_{L} symmetry. The mesonic degrees of freedom are the standard scalar and pseudoscalar mesons and the vector and axial-vector mesons. The baryonic degrees of freedom are the nucleon, NN, and its chiral partner, N∗N^{*}, which is usually identified with N(1535). The chiral partner is incorporated in the so-called mirror assignment, where the nucleon mass is not solely generated by the chiral condensate but also by a chirally invariant mass term, m0m_{0}. The presence of (axial-) vector fields modifies the expressions for the axial coupling constants of the nucleon, gANg_{A}^{N}, and its partner, gAN∗g_{A}^{N^{*}}. Using experimental data for the decays N∗→NπN^{*} \to N \pi and a1→πγa_{1} \to\pi\gamma, as well as lattice results for gAN∗g_{A}^{N^{*}} we infer m0∼500m_{0}\sim500 MeV, i.e., an appreciable amount of the nucleon mass originates from sources other than the chiral condensate. We test our model by evaluating the decay N∗→NηN^{*} \to N \eta and the s-wave nucleon-pion scattering lengths a0(±)a_{0}^{(\pm)}.Comment: 16 pages, 2 figures. To appear in Phys. Rev.

    Coherence in scale-free networks of chaotic maps

    Get PDF
    We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both dynamical and topological parameters. Three different network topologies are considered: (i) random scale-free topology, (ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian network. For the random scale-free topology we find a coupling strength threshold beyond which full synchronization is attained. This threshold scales as k−μk^{-\mu}, where kk is the outgoing connectivity and μ\mu depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling strength is proportional to the neighbor connectivity. We show that the transition to coherence is of first-order and study the role of the most connected nodes in the collective dynamics of oscillators in scale-free networks.Comment: 9 pages, 8 figure

    The current progress of the ALICE Ring Imaging Cherenkov Detector

    Get PDF
    Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.Comment: Presented at the Imaging-2006 Conference, Stockholm, Sweden, June 200

    Spatial updating, spatial transients, and regularities of a complex automaton with nonperiodic architecture

    Get PDF
    We study the dynamics of patterns exhibited by rule 52, a totalistic cellular automaton displaying intricate behaviors and wide regions of active/inactive synchronization patches. Systematic computer simulations involving 230 initial configurations reveal that all complexity in this automaton originates from random juxtaposition of a very small number of interfaces delimiting active/inactive patches. Such interfaces are studied with a sidewise spatial updating algorithm. This novel tool allows us to prove that the interfaces found empirically are the only interfaces possible for these periods, independently of the size of the automata. The spatial updating algorithm provides an alternative way to determine the dynamics of automata of arbitrary size, a way of taking into account the complexity of the connections in the lattice

    Periodic Neural Activity Induced by Network Complexity

    Get PDF
    We study a model for neural activity on the small-world topology of Watts and Strogatz and on the scale-free topology of Barab\'asi and Albert. We find that the topology of the network connections may spontaneously induce periodic neural activity, contrasting with chaotic neural activities exhibited by regular topologies. Periodic activity exists only for relatively small networks and occurs with higher probability when the rewiring probability is larger. The average length of the periods increases with the square root of the network size.Comment: 4 pages, 5 figure

    Onset of fluidization in vertically shaken granular material

    Full text link
    When granular material is shaken vertically one observes convection, surface fluidization, spontaneous heap formation and other effects. There is a controversial discussion in literature whether there exists a threshold for the Froude number Γ=A0ω02/g\Gamma=A_0\omega_0^2/g below which these effects cannot be observed anymore. By means of theoretical analysis and computer simulation we find that there is no such single threshold. Instead we propose a modified criterion which coincides with critical Froude number Γc=1\Gamma_c=1 for small driving frequency ω0\omega_0.Comment: 7 pages, 5 figure

    Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model

    Get PDF
    We report phase diagrams detailing the intransitivity observed in the climate scenarios supported by a prototype atmospheric general circulation model, namely, the Lorenz-84 low-order model. So far, this model was known to have a pair of coexisting climates described originally by Lorenz. Bifurcation analysis allows the identification of a remarkably wide parameter region where up to four climates coexist simultaneously. In this region the dynamical behavior depends crucially on subtle and minute tuning of the model parameters. This strong parameter sensitivity makes the Lorenz-84 model a promising candidate of testing ground to validate techniques of assessing the sensitivity of low-order models to perturbations of parameters
    • …
    corecore