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We report phase diagrams detailing the intransitivity observed in the climate scenarios supported by
a prototype atmospheric general circulation model, namely, the Lorenz-84 low-order model. So far,
this model was known to have a pair of coexisting climates described originally by Lorenz. Bifur-
cation analysis allows the identification of a remarkably wide parameter region where up to four
climates coexist simultaneously. In this region the dynamical behavior depends crucially on subtle
and minute tuning of the model parameters. This strong parameter sensitivity makes the Lorenz-84
model a promising candidate of testing ground to validate techniques of assessing the sensitivity of
low-order models to perturbations of parameters. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2953589�

The reliability of simulated climates depends critically on
the quality of model parameters. Extensive investigation
of parameter space is, however, prohibitively expensive
for realistic atmospheric general circulation models
which normally involve sets with several thousands of
coupled differential equations. The aim of this paper is to
report phase diagrams detailing the multistability as ob-
served in the climate scenarios supported by a prototype
atmospheric general circulation model, namely, the
Lorenz-84 low-order model. As pointed out by Smith,1

although it is unreasonable to expect solutions to low-
dimensional problems to generalize to a million dimen-
sional spaces, so too it is unlikely that problems identified
in the simplified models will vanish in operational mod-
els. On the other hand, recent results cited below indicate
the possibility that high-dimensional models may behave
in a smooth way with respect to changes in parameter
values. Our reanalysis of the parameter space uncovers
the existence of a remarkably wide new phase where up
to four climates coexist simultaneously. Thus, in addition
to the familiar sensitive dependence on initial conditions,
the final climate (attractor) may depend crucially on
subtle and minute tuning of parameters. This new phase
is a good testing ground to validate techniques of assess-
ing the sensitivity of a much used low-order model to
perturbations of parameters. Our investigation also re-
veals the existence and inner structuring of wide chaotic
phases in Lorenz’s flow. Although chaotic phases of dis-
crete mappings have been explored for a number of years
now, the exploration of chaotic phases in flows is just
starting and certainly demands much more work.

I. INTRODUCTION

It is well-established that one essential ingredient con-
trolling the reliability of simulated future climate scenarios is
the precision of model parameters. The precision of model
parameters is also a determinant factor that greatly shapes

the outcome of any model simulation. Dependence on pa-
rameters is so important for climate prediction that, for ex-
ample, an intergovernmental panel on climate change has
issued an explicit call for a systematic evaluation of the ef-
fect of parameter uncertainties on the simulation of the
present climate.2,3

Ideally, what one would like to do to assess the reliabil-
ity of simulated climate is to change model parameters and
repeat simulations, validating then the results. This proce-
dure is, however, prohibitively expensive for realistic atmo-
spheric general circulation models �AGCMs� which may in-
volve simulating sets with several thousands of coupled
differential equations.4 A promising approach to mitigate this
severe computational problem is the ingenious idea behind
the climateprediction.net, namely, large scale distributed
computations exploiting idle processing capacity on personal
computers volunteered by the general public around the
world.5

In order to describe accurately the instantaneous state of
the Earth’s entire atmosphere, a very large number �of the
order of 107� of variables has to be used.6 Such descriptions
are perhaps the ones consuming the largest fraction of com-
putational power ever. And this is likely to remain, indepen-
dently of how powerful computers might become in the fu-
ture.

Alternatively, a number of questions and processes in-
volved in climate prediction may be conveniently addressed
using a considerably simpler approach based in the so-called
low-order models, which involve of the order of 100 equa-
tions or even less than that. As pointed out by Smith, “al-
though it is unreasonable to expect solutions to low-
dimensional problems to generalize to a million dimensional
spaces, so too it is unlikely that problems identified in the
simplified models will vanish in operational models.”1 It is
equally important to note recent results which indicate the
possibility that high-dimensional models may behave in a
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smooth way with respect to changes in parameter values.7–9

Thus, low-order models may well have little to do with
higher-dimensional operational models. But this fact does
not detract from their utility in providing useful insight.

A very appealing low-order model of atmospheric circu-
lation is one introduced by Lorenz in 1984, involving just
three first-order differential equations, Eqs. �1�–�3� below. As
pointed out by Lorenz, his model is perhaps “the simplest
possible general circulation model.”10,11 Lorenz’s model al-
lows one to address specific questions concerning key appli-
cations. For instance, how the coexistence of two possible
climates combined with variations of the solar heating may
give rise to seasons with interannual variability,10–13 how the
asymmetry between oceans and continents is basic for the
system to exhibit complex behaviors,14,15 how the climate is
affected by the interactions between atmosphere and the
oceans,16,17 as a test-ground for techniques devised to char-
acterize and measure predictability.18 Aside from practical
applications, the low-order model has also attracted attention
because of certain interesting and subtle mathematical as-
pects of its differential equations and bifurcational
phenomena.19–21

While intransitivity, i.e., coexistence of attractors �“mul-
tistability”�, in the Lorenz-84 model has been known and
studied since the original publications of Lorenz,10,11 so far
the relative abundance of the different climates �attractors� of
the model was not yet considered. The main emphasis so far
has been mostly on describing the rich variety of dynamical
behaviors and bifurcations and on the manifold mathematical
subtleties of the equations of motion.19–21 Our goal here is to
investigate the prevalence of all possible climates supported
by the Lorenz-84 model. To this end, we compute numerical
phase diagrams of each climate, based on the Lyapunov
spectrum. We wish to obtain a quantitative description of the
parameter space which is detailed enough to allow subse-
quent investigation of the influence in ensemble statistics of
some highly intransitive parameter domains described below.
The low-order model is obviously too simplified to represent
full AGCM. But Lorenz’s model has the virtue of allowing
its parameter and phase spaces to be sampled exhaustively; a
feature that we exploit here.

Apart from intransitivity diagrams, there is an additional
twist that we wish to exploit. The substantial increase in
computer power opens the way to explore long overdue chal-
lenges: the characterization of chaotic phases of flows.
While the structuring of chaotic phases in maps is fairly well
understood, at least in low dimensions, the equivalent prob-
lem for systems ruled by sets of nonlinear ordinary differen-
tial equations remains essentially open. An enticing question
is that concerning the interconnections among networks of
infinite regular phases which exist abundantly embedded in
chaotic phases.

II. LORENZ-84 LOW-ORDER MODEL

A comprehensive review of the Lorenz-84 model is
given in Sec. 9.3 of the nice book of Tel and Gruiz.6 The
model is defined by three nonlinear autonomous differential
equations, namely,10,11

ẋ = − y2 − z2 − ax + aF , �1�

ẏ = xy − y − bxz + G , �2�

ż = bxy + xz − z . �3�

Here, x represents the intensity of the symmetric globe-
encircling westerly wind current, and also the poleward tem-
perature gradient, which is assumed to be in permanent equi-
librium with it. The variables y and z represent the cosine
and sine phases of a chain of superposed large-scale eddies,
which transport heat poleward at a rate proportional to the
square of their amplitude, and transport no angular momen-
tum at all.

The nonlinear contributions xy and xz in Eqs. �2� and �3�
represent amplification of the eddies through interaction with
the westerly current; this occurs at the expense of the west-
erly current, as indicated by the terms −y2 and −z2 in Eq. �1�.
The variables have been scaled so that the coefficients are
unity. The terms −bxz and bxy represent displacement of the
eddies by the westerly current, and the coefficient b, greater
than unity, allows the amplification. The linear terms repre-
sent mechanical and thermal damping; the damping time for
the eddies has been chosen as the time unit, while the coef-
ficient a, if less than unity, allows the westerly current to
damp less rapidly than the eddies. So, only the regions where
a�1 and b�1 are investigated. The constant terms aF and
G in the model represent symmetric and asymmetric thermal
forcings; F and G are the values to which x and y would be
driven if the westerly current and the eddies were not
coupled. Lorenz identifies the eddies with Rossby waves,
even though a prominent mechanism for wave propagation
identified by Rossby22 is missing from the model. Note that
since the model is invariant under the transformation
�x ,y ,z ,G�= �x ,−y ,−z ,−G�, there is a symmetry relative to
the G=0 axis so that it is enough to investigate the region
G�0.

For different intensities of the axially symmetric and
asymmetric thermal forcing Lorenz10,11 found the model to
support �i� one or two stable steady-state solutions, �ii� one
or two stable periodic solutions, or �iii� irregular �aperiodic�
solutions. In other words, for a fixed set of parameters one
finds intransitivity involving two distinct attractors, each one
consisting of two disjoint pieces and corresponding to a
closed curve, and associated with two different climates.

Figure 1 shows representative examples of the time-
series originally studied by Lorenz, illustrating the onset of
intransitivity as the asymmetrical thermal forcing G in-
creases from G=0.2 to 0.8. For G=0.2, all initial conditions
eventually converge to the very regular oscillations seen on
the leftmost panel of the figure. In contrast, for G=0.8, the
attractor existing originally in Fig. 1�a� evolves into the one
shown in Fig. 1�b� and a new coexisting periodic solution,
shown in Fig. 1�c�, appears. In other words, the phase-space
contains two distinct basin of attraction when G=0.8, instead
of the single basin existing for G=0.2.
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III. FOUR COEXISTING ATTRACTORS

Figure 1 illustrates the pair of coexisting attractors found
by Lorenz. The purpose of this section is to show that for
parameters like, for example,

P � �F,G,a,b� = �6.846,1.287,0.25,4� , �4�

four stable attractors coexist in phase space �see Fig. 6 be-
low�. The model has already been known as a rather non-
trivial low-order system. With this finding it becomes an
even more complex, useful tool for investigating problems of
climate dynamics in a simple setting. The coexistence of a
relatively high number of attractors is representative of what
we find over extended parameter regions, as discussed in the
next section.

The simplest attractor found for the parameters defining
point P in Eq. �4� is a fixed point located near

� � �x,y,z� = �0.017 460 01,0.303 285 4,0.092 639 0� .

�5�

In addition to this fixed point there are also three distinct
time-dependent solutions as shown in Figs. 2 and 3 in two
different representations. In these figures the labels A, B, C,
D are used to mark the four coexisting attractors.

Although the attractors in Figs. 3�a� and 3�b� look some-
what similar, the splitting seen in Fig. 3�b� indicates clearly
that their periods involve a distinct number of peaks. For
instance, while attractor A has two peaks that repeat periodi-

cally, attractor B has four peaks doing so. That the repetitions
occur in this way is difficult to recognized from Fig. 2, due
to the scales involved.

After realizing the coexistence of four attractors at P, it is
natural to inquire about the relative probability of finding
each individual attractor in phase-space, as a function of the
initial conditions. The answer may be found numerically by
computing the individual basins of attraction of each solution
for suitably chosen windows.

To this end we constructed histograms based on
Lyapunov exponents23–30 computed for Eqs. �1�–�3�, for a
rectangular mesh of initial conditions covering a window in
the x�y plane. The Lyapunov spectra was determined using
a fourth-order Runge–Kutta integrator with a fixed step size
of 0.01 units, corresponding physically to 1.2 h. Typically, a
transient of 7�104 time steps is first removed, with expo-
nents then computed during a time interval 20 times larger
than the transient, since close to bifurcations it takes consid-
erably more time for the Lyapunov exponent to settle, a fea-
ture familiar in the computation of exponents.

Figure 4 shows two examples of histograms computed
for the parameter point P of Eq. �4�. In this figure the letters
A, B, C, D mark peaks corresponding to attractors with simi-
lar labels in Figs. 2 and 3. The histograms in Fig. 4 were
computed for two different regions and resolutions in phase
space. Figure 4�a� was computed for a grid of 600�600
initial conditions, covering the phase-space window shown
in Fig. 5�a�. In this figure, the relative abundances of attrac-

FIG. 1. The onset of intransitivity as G increases. �a� For G=0.2 there is a single periodic solution, illustrated here when starting from �x ,y ,z�
= �0.5,−1.1,1.0�. For G=0.8 there are two distinct solutions: �b� periodic solution when starting from the same initial condition; �c� additional periodic
solutions obtained when starting from �0.7,−0.4,0.6�. In all panels: F=8, a=0.25, and b=4.

FIG. 2. The three nontrivial climates which coexist with the fixed point � for parameters P given in Eq. �4�. Initial conditions for attractors A, B, C are,
respectively, �x ,y ,z�= �−0.6,−0.58,0�, �0.87,−1.4,0�, and �0.71,−0.96,0�.
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tors A, B, C, D are 35.06%, 24.70%, 0.23%, 40.01%, respec-
tively. In contrast, Fig. 4�b� was obtained for a grid of 750
�750 initial conditions covering the window shown in Fig.
5�b�. The relative abundances of A, B, C, D are 37.12%,
21.00%, 2.15%, 39.73%, respectively. In both figures, the
largest D peak, near −1.2, corresponds to the fixed point �.
Comparing the histograms in Figs. 4�a� and 4�b� one recog-
nizes that the relative distribution is not much affected by the
distinct regions and distinct resolutions used to obtain them.

Figure 5 shows the very intricate structuring of the ba-
sins of attraction for the parameters at point P. The basins
were easily plotted with the help of the histograms in Fig. 4.
They allow us to discriminate attractors in phase space by
coloring in a similar way all exponents that fall under a given
peak. For instance, the basins corresponding to the histo-
grams in Figs. 4�a� and 4�b� are shown in Figs. 5�a� and 5�b�,
respectively. The basins seen in Fig. 5 show z=0 sections of
the phase space, indicating clearly that the four basins are
very intertwined and imply strong final state sensitivity on
initial conditions. Figure 5�a� also shows that the basins of
the fixed point D and attractors A and B are considerably

larger than that of attractor C, essentially invisible in this
scale, and that may be easily missed under low resolution or
washed out in the presence of noise. The basin of the attrac-
tor C is visible in the zoom presented in Fig. 5�b�. The basins
in Fig. 5 seem to have the Wada property, an indicator of
strong unpredictability of the parameters in this phase.31,32

IV. INTRANSITIVITY DIAGRAMS

The purpose of this section is to present phase diagrams
discriminating all possible climates of the Lorenz-84 model,
and to characterize the abundance of intransitivity,10,11 i.e.,
the abundance of multistability in parameter space. We
present phase diagrams showing that the several attractors

FIG. 3. Three-dimensional views of the four attractors coexisting at the
point P defined in Eq. �4� and indicated by the white dot in Fig. 6. The fixed
point seen in panel D is located at the point � defined in Eq. �5�.

FIG. 4. The relatively invariant volume of the basins of attraction of the four
attractors at P, determined by the second largest Lyapunov exponent for two
regions and resolutions in phase space. �a� Histogram for 600�600 initial
conditions covering the window shown in Fig. 5�a�. �b� Histogram for 750
�750 initial conditions covering the window shown in Fig. 5�b�; see text.

FIG. 5. �Color online� Very strong sensitivity to initial conditions illustrated
by basins of attraction for a z=0 surface section of Eqs. �1�–�3�. The four
colors represent the four attractors coexisting for parameters P, Eq. �4�,
colored according to the four peaks in the histograms in Fig. 4. �a� A large
window of phase-space; �b� magnification of the box in �a�. The letters A, B,
C, D mark basins using the same labels in Figs. 2 and 3. The crosses indicate
initial conditions �x ,y ,z� leading to the attractors A, B, C, D, respectively:
�−0.6,−0.58,0�, �0.87,−1.4,0�, �0.71,−0.96,0�, �0.65,−0.67,0�.
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discussed in the previous section exist over relatively wide
regions of parameter space and describe the fourfold “foli-
ated” nature of the parameter space, as induced by the initial
conditions leading to individual climates �attractors�.

As it is well known, the final attractor toward which the
system converges usually depends sensitively on the initial
conditions used to start the integration.29,30 This is illustrated
in Fig. 1 for G=0.8. A consequence of this fact is that phase
diagrams normally contain “overlaps,” i.e., parameter re-
gions where more than one attractor coexist simultaneously.
Such overlap of distinct attractors is the same one faced
when plotting bifurcation diagrams in the presence of intran-
sitivity.

Figure 6 shows a phase diagram discriminating with col-
ors the number of different attractors coexisting in a 600
�600 window in parameter space, as indicated by the labels.
The shape and volume of the coexistence regions varies con-
siderably. The triangular-shaped region containing the label 4
indicates the domain where four attractors coexist. The white
dot roughly at the center of the region indicates the location
of the point P of Eq. �4�.

Figure 6 was obtained by determining the boundaries of
the parameter planes corresponding to each coexisting attrac-
tor. Such boundaries were obtained by following individual
attractors in all directions in parameter space, as far as pos-
sible.

When performing computations for large sets of param-
eters and initial conditions one normally tunes integrators to
produce reliable exponents by conducting a reasonable num-
ber of tests and assuming that such tests define the quality of
all subsequent integrations.23,24 However, as it is also the
case in the computation of bifurcation diagrams,29,30 near
bifurcation boundaries there is a considerable “numerical
lethargy,” a pronounced increase in the transient time need to
approach the final attractor and to assure convergence of
Lyapunov exponents. For these reasons, the boundaries of
the region where four different attractors coexist in Fig. 6 are
computationally time consuming to define accurately with
high resolution. While we believe the overall volume and
structuring of the boundaries in Fig. 6 to be essentially cor-

rect, small gaps and fluctuations might exist along the
boundaries.33–37 Therefore, boundaries should be regarded as
schematic in the figure. At any rate, our present aim is to
show the existence of an extended four-climate phase, not to
define unambiguously the structure of the boundaries.

Each of the coexisting attractors coexisting in Fig. 6 has
a corresponding basin of attraction in phase space which,
when properly scanned, reveals a foliated structuring of the
parameter space as displayed in the four panels in Fig. 7. In
this, and in similar figures below, we plot 600�600
Lyapunov exponents on an equally spaced rectangular grid.
Gray tonalities are used to represent parameter regions con-
taining fixed points and other periodic motions �i.e., negative
exponents�. In contrast, yellow and red colors are used to
represent chaotic phases �i.e., positive exponents�, with red
indicating exponents of larger magnitude.

When more than one attractor coexists, we selected one
of them to define the color in the figures, usually chosen to
maximize the information content of the phase diagram. Col-
ors represent always exponents of largest nontrivial magni-
tudes, meaning that the second largest exponent was used
whenever the magnitude of the largest exponent was found
to be zero. Furthermore, although the same scale of colors is
used for all pictures, scales were renormalized to reflect the
maximum and minimum exponents present in each indi-
vidual figure �instead of using a fixed color scale for all
figures�.

Altogether, we find four distinct sets of initial conditions,
leading to the four parameter planes shown in Fig. 7. The
individual panels in Fig. 7 were computed by starting from a
fixed arbitrary initial condition on an arbitrary boundary,
here the leftmost boundary, and then proceeding by “follow-
ing the attractor.”33 By this we mean to follow as much as
possible the evolution of that particular attractor found at the
initial boundary, by repeating the following expedient: �i�
record the value of all variables at the end of an integration
for a fixed set of parameters; �ii� increment parameters in-
finitesimally; �iii� use the recorded values of the variables as
initial conditions to start integration for the new �incre-
mented� parameters.

For the record, we mention that Fig. 6 was obtained by
combining in a single figure the results contained in the four
panels of 7. Figure 6 results from the determination of the
number of coexisting climates done by the analysis of the
Lyapunov histograms for 4�600�600 parameter pairs
�F ,G�, a time-consuming numerical task.

Figure 8 presents a larger view of parameter space, ob-
tained by following the attractor found on the left F=3
boundary. The roughly triangular-shaped region seen in the
upper left corner marks the domain of fixed points investi-
gated by Lorenz.10,11 The parameter region contained inside
the box is the same considered previously in Figs. 6 and 7.
The rough characterization reported by Roebber16 agrees
well with the classification presented in our Fig. 8. The very
coarse-grained classification of Roebber is by far the most
detailed classification that we are aware of for the climates of
the Lorenz-84 model.

As mentioned in the Introduction, while relatively wide
portions of the F�G parameter plane have been considered

FIG. 6. �Color online� Intransitivity diagram in F�G space. The numbers
indicate the number of distinct climates �attractors� which coexist. The white
dot marks the point P of Eq. �4�. Here a=0.25 and b=4.
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before by a number of authors, virtually all computations so
far were done only for Lorenz’s choice of a=0.25 and b=4.
The exception are the considerations of van Veen,21 in Sec.
5.1, who studies the case a=0.35 and b=1.33. To check what
happens when a and b are varied systematically we per-
formed one additional experiment.

Figures 9�a� and 9�b� show phase diagrams when one
considers variations of a and b around the values considered
originally by Lorenz, while maintaining F=8 and G=1 fixed.

FIG. 7. �Color online� The four pa-
rameter planes A–D which overlap to
produce the diagram of the density of
attractors depicted in Fig. 6. Here and
in similar figures below, fixed points
and other periodic solutions �negative
exponents� are represented in dark
shadings. Chaotic phases �positive ex-
ponents� are shown in yellow and red
colors �lighter shadings�. Crosses
mark the point P of Eq. �4�. Here a
=0.25 and b=4.

FIG. 8. �Color online� Global view of the F�G plane discriminating regu-
lar phases �shown in dark shadings� and chaotic phases �in color�. The
chaotic phase is riddled with substructurings and accumulations with char-
acteristic scaling properties �Ref. 35�. The box marks the parameter window
shown in Figs. 6 and 7. Here a=0.25 and b=4.

FIG. 9. �Color online� Phase diagrams in a�b space when fixing F=8 and
G=1. The parameters studied by Lorenz and others are a=0.25, b=4, indi-
cated by the cross. �a� Global view, showing predominance of periodic so-
lutions, represented by the dark shadings, proportional to the magnitude of
the exponents. �b� Zoom of the box in �a�, the region containing chaotic
solutions �lighter yellow/red shadings�.
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Figures 9�a� and 9�b� were computed in the same way as in
Figs. 7 and 8. As seen from Fig. 9�a�, periodic behaviors
�dark shadings� clearly dominate in this portion of the a
�b plane. Chaotic solutions �in yellow/red lighter shadings�
appear however, concentrated on a relatively smaller region,
seen in Fig. 9�b�, emphasizing that chaos exists for relatively
wide variations of a and/or b forcings, mainly for a less than
about 0.4. Preliminary work indicates that intransitivity
should be also abundant when varying a and b while keeping
F and G fixed. This interesting possibility remains, however,
to be investigated.

V. FINAL REMARKS

We investigated coexistence and parameter dependence
of all distinct climate scenarios supported by the Lorenz-84
general circulation model. We based our study on phase dia-
grams paying particular attention to the number, nature, and
relative abundance of the climate scenarios supported by the
model. A striking result is that the final climate scenario cru-
cially depends on subtle and minute tuning of parameters.
Albeit for a severely truncate low-order model, our work
provides evidence corroborating the belief that a proper
quantification of the sensitivity of climate models with re-
spect to perturbation of parameters is crucial to assess both
the robustness and the significance of the climate scenarios.3

An attractive open problem now is the obvious need of
performing more realistic numerical experiments when
model parameters are subject to both noise and slowly vary-
ing external forcings, e.g., the annual cycle of the solar heat-
ing via periodic change of F. An adequate characterization of
the climate scenarios supported by the model may be
achieved in this case by applying the ergodic theory of dy-
namical systems38 and the so-called ensemble approach.39,40

This approach has been successfully used in several studies,
e.g., in assessing the suitability of general circulation models
for making seasonal predictions,41 in separating the variabil-
ity of the atmospheric flow into an internal part due to atmo-
spheric dynamics and an external part due to sea surface
temperature forcing42 and in understanding the role of cli-
mate forcings and chaos �unforced variability� in climate.43

A study of the climate scenarios supported by the Lorenz-84
model when subjected to periodic forcing is reported
elsewhere.44

The small quantity of equations of Lorenz-84 model
could be explored to build a system of a class that is attract-
ing much attention nowadays, namely, networks of coupled
�atmospheric� oscillators. When combined with ideas of
graph theory, such coupled oscillators are helpful to investi-
gate the impact of network and subnetwork architectures on
global properties, synchronization, and coherence of com-
plex systems in general.45,46
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