299 research outputs found
Morphology and distribution of the spinner dolphin, <i>Stenella longirostris</i>, rough-toothed dolphin, <i>Stenella bredanensis</i> and melon-headed whale, <i>Peponocephala electra</i>, from waters off the Sultanate of Oman
The morphology of three tropical delphinids from the Sultanate of Oman and their occurrence in the Arabian Sea are presented. Body lengths of four physically mature spinner dolphins (three males) ranged from 154-178.3cm (median 164.5cm), i.e. smaller than any known stock of spinner dolphins, except the dwarf forms from Thailand and Australia. Skulls of Oman spinner dolphins (n=10) were practically indistinguishable from those of eastern spinner dolphins (Stenella longirostris orientalis) from the eastern tropical Pacific, but were considerably smaller than skulls of populations of pantropical (Stenella longirostris longirostris) and Central American spinner dolphins (Stenella longirostris centroamericana). Two colour morphs (CM) were observed. The most common (CM1) has the typical tripartite pattern of the pantropical spinner dolphin. A small morph (CM2), so far seen mostly off Muscat, is characterised by a dark dorsal overlay obscuring most of the tripartite pattern and by a pinkish or white ventral field and supragenital patch. Two skulls were linked to a CM1 colour morph, the others were undetermined. It is concluded that Oman spinner dolphins should be treated as a discrete population, morphologically distinct from all known spinner dolphin subspecies. Confirmed coastal range states off the Arabian Peninsula include the United Arab Emirates, the Sultanate of Oman, Yemen, Somalia, Djibouti, Saudi Arabia, Sudan and Egypt. The taxonomic position of the two damaged dolphin calvariae from Oman has been the issue of much debate. This paper discusses the cranial characteristics that allow positive identification as rough-toothed dolphin (Steno bredanensis) and melon-headed whale (Peponocephala electra) respectively. The calvariae represent the first confirmed specimen records of these dolphin species for the Arabian Sea sensu lato
Few cycle pulse propagation
We present a comprehensive framework for treating the nonlinear interaction
of few-cycle pulses using an envelope description that goes beyond the
traditional SVEA method. This is applied to a range of simulations that
demonstrate how the effect of a nonlinearity differs between the
many-cycle and few-cycle cases. Our approach, which includes diffraction,
dispersion, multiple fields, and a wide range of nonlinearities, builds upon
the work of Brabec and Krausz[1] and Porras[2]. No approximations are made
until the final stage when a particular problem is considered.
The original version (v1) of this arXiv paper is close to the published
Phys.Rev.A. version, and much smaller in size.Comment: 9 pages, 14 figure
Energy Release During Slow Long Duration Flares Observed by RHESSI
Slow Long Duration Events (SLDEs) are flares characterized by long duration
of rising phase. In many such cases impulsive phase is weak with lack of
typical short-lasting pulses. Instead of that smooth, long-lasting Hard X-ray
(HXR) emission is observed. We analysed hard X-ray emission and morphology of
six selected SLDEs. In our analysis we utilized data from RHESSI and GOES
satellites. Physical parameters of HXR sources were obtained from imaging
spectroscopy and were used for the energy balance analysis. Characteristic time
of heating rate decrease, after reaching its maximum value, is very long, which
explains long rising phase of these flares.Comment: Accepted for publication in Solar Physic
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares
The extreme ultraviolet portion of the solar spectrum contains a wealth of
diagnostic tools for probing the lower solar atmosphere in response to an
injection of energy, particularly during the impulsive phase of solar flares.
These include temperature and density sensitive line ratios, Doppler shifted
emission lines and nonthermal broadening, abundance measurements, differential
emission measure profiles, and continuum temperatures and energetics, among
others. In this paper I shall review some of the advances made in recent years
using these techniques, focusing primarily on studies that have utilized data
from Hinode/EIS and SDO/EVE, while also providing some historical background
and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the
Topical Issue on Solar and Stellar Flare
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2005.Includes bibliographical references (leaves 195-200).A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of containerized nuclear terror in a novel way. Critical tactical misjudgments exist in currently deployed detection systems, which expose U.S. cities to an act of nuclear terrorism. Current port-based systems position defenses within the perimeter of each coastal city and the assumption that terrorists would not remotely detonate the weapon while taxiing past urban areas en route to the port is irrational. The new approach protects this hole in national security by moving defenses outside the perimeter and onto the containership. A networked system of radiation detectors, aboard all inbound containerships, does not allow a concealed nuclear weapon to ever approach the U.S. homeland. This thesis describes the ship-based system in detail, outlines its capabilities and suggests possible deployment scenarios. The basic concept of the ship-based system is to hide detectors in empty standard 40-foot shipping containers and send them back and forth across the ocean alongside normal cargo. Containerized arrays of gamma and neutron detectors are linked to small data processing and transmitting devices.(cont.) Data is transmitted to a central U.S. location for collection, assessment, and possible dissemination to responders in the event of threat identification. Upon positive detection, an alarm condition is signaled and interception of the containership occurs while still at sea. Monte Carlo based simulations suggest that due to long count times during typical two week voyages, radiation transport is significant enough such that containerized units will detect weapons grade uranium and plutonium in implosion-type configurations with three-sigma confidence from distances averaging 22.0 and 23.5 meters of cargo respectively. The vast majority of containerships require between 3 and 15 units deployed on each ship depending on its capacity and degree of control over container placement. Given the low number of units required for each ship, deployment of a containerized detector network is practical and an initial limited deployment increases the level of deterrence by, denial against containerized nuclear terror.by Shawn P. Gallagher.S.M
The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism
Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions
- …
