139 research outputs found
Recommended from our members
Colorimetric and Longitudinal Analysis of Leukocoria in Recreational Photographs of Children with Retinoblastoma
Retinoblastoma is the most common primary intraocular tumor in children. The first sign that is often reported by parents is the appearance of recurrent leukocoria (i.e., “white eye”) in recreational photographs. A quantitative definition or scale of leukocoria – as it appears during recreational photography – has not been established, and the amount of clinical information contained in a leukocoric image (collected by a parent) remains unknown. Moreover, the hypothesis that photographic leukocoria can be a sign of early stage retinoblastoma has not been tested for even a single patient. This study used commercially available software (Adobe Photoshop®) and standard color space conversion algorithms (operable in Microsoft Excel®) to quantify leukocoria in actual “baby pictures” of 9 children with retinoblastoma (that were collected by parents during recreational activities i.e., in nonclinical settings). One particular patient with bilateral retinoblastoma (“Patient Zero”) was photographed >7, 000 times by his parents (who are authors of this study) over three years: from birth, through diagnosis, treatment, and remission. This large set of photographs allowed us to determine the longitudinal and lateral frequency of leukocoria throughout the patient's life. This study establishes: (i) that leukocoria can emerge at a low frequency in early-stage retinoblastoma and increase in frequency during disease progression, but decrease upon disease regression, (ii) that Hue, Saturation and Value (i.e., HSV color space) are suitable metrics for quantifying the intensity of retinoblastoma-linked leukocoria; (iii) that different sets of intraocular retinoblastoma tumors can produce distinct leukocoric reflections; and (iv) the Saturation-Value plane of HSV color space represents a convenient scale for quantifying and classifying pupillary reflections as they appear during recreational photography
Impact of central surgical review in a study of malignant germ cell tumors
BACKGROUND:
Verification of surgical staging has received little attention in clinical oncology trials. Central surgical review was undertaken during a study of malignant pediatric germ cell tumors.
METHODS:
Children's Oncology Group study AGCT0132 included central surgical review during the study. Completeness of submitted data and confirmation of assigned stage were assessed. Review responses were: assigned status confirmed, assignment withheld pending review of additional information requested, or institutional assignment of stage disputed with explanation given. Changes in stage assignment were at the discretion of the enrolling institution.
RESULTS:
A total of 206 patients underwent central review. Failure to submit required data elements or need for clarification was noted in 40%. Disagreement with stage assignment occurred in 10% with 17/21 discordant patients reassigned to stage recommended by central review. Four ovarian tumor patients not meeting review criteria for Stage I remained in that stratum by institutional decision. Two-year event free survival in Stage I ovarian patients was 25% for discordant patients compared to 57% for those meeting Stage I criteria by central review.
CONCLUSIONS:
Central review of stage assignment improved complete data collection and assignment of correct tumor stage at study entry, and allowed for prompt initiation of chemotherapy in patients determined not to have Stage I disease
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
MADNESS (multiresolution adaptive numerical environment for scientific
simulation) is a high-level software environment for solving integral and
differential equations in many dimensions that uses adaptive and fast harmonic
analysis methods with guaranteed precision based on multiresolution analysis
and separated representations. Underpinning the numerical capabilities is a
powerful petascale parallel programming environment that aims to increase both
programmer productivity and code scalability. This paper describes the features
and capabilities of MADNESS and briefly discusses some current applications in
chemistry and several areas of physics
Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation
We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain, constructed from the amalgamation of 323 new high precision gravity measurements with existing gravity data from 361 observations. The new anomaly map images the high-density core of the CVC and the pronounced gravity low centred in the Las Cañadas caldera in greater detail than previously available. Mathematical construction of a sub-surface model from the local anomaly data, employing a 3D inversion based on 'growing' the sub-surface density distribution via the aggregation of cells, enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture. We find the resultant density distribution in agreement with geological and other geophysical data. The modelled sub-surface structure supports a vertical collapse origin of the caldera, and maps the headwall of the ca. 180 ka Icod landslide, which appears to lie buried beneath the Pico Viejo–Pico Teide stratovolcanic complex. The results allow us to put into context the recorded ground deformation and gravity changes at the CVC during its reactivation in spring 2004 in relation to its dominant structural building blocks. For example, the areas undergoing the most significant changes at depth in recent years are underlain by low-density material and are aligned along long-standing structural entities, which have shaped this volcanic ocean island over the past few million years
- …