136 research outputs found

    High-contrast imaging in polychromatic light with the self-coherent camera

    Full text link
    Context. In the context of direct imaging of exoplanets, coronagraphs are commonly proposed to reach the required very high contrast levels. However, wavefront aberrations induce speckles in their focal plane and limit their performance. Aims. An active correction of these wavefront aberrations using a deformable mirror upstream of the coronagraph is mandatory. These aberrations need to be calibrated and focal-plane wavefront-sensing techniques in the science channel are being developed. One of these, the self-coherent camera, of which we present the latest laboratory results. Methods. We present here an enhancement of the method: we directly minimized the complex amplitude of the speckle field in the focal plane. Laboratory tests using a four-quadrant phase-mask coronagraph and a 32x32 actuator deformable mirror were conducted in monochromatic light and in polychromatic light for different bandwidths. Results. We obtain contrast levels in the focal plane in monochromatic light better than 3.10^-8 (RMS) in the 5 - 12 {\lambda}/D region for a correction of both phase and amplitude aberrations. In narrow bands (10 nm) the contrast level is 4.10^-8 (RMS) in the same region. Conclusions. The contrast level is currently limited by the amplitude aberrations on the bench. We identified several improvements that can be implemented to enhance the performance of our optical bench in monochromatic as well as in polychromatic light.Comment: 4 pages, 3 figures, accepted in Astronomy & Astrophysics (02/2014

    Independent confirmation of {\beta} Pictoris b imaging with NICI

    Full text link
    Context. {\beta} Pictoris b is one of the most studied objects nowadays since it was identified with VLT/NaCo as a bona-fide exoplanet with a mass of about 9 times that of Jupiter at an orbital separation of 8-9 AU. The link between the planet and the dusty disk is unambiguously attested and this system provides an opportunity to study the disk/planet interactions and to constrain formation and evolutionary models of gas giant planets. Still, {\beta} Pictoris b had never been confirmed with other telescopes so far. Aims. We aimed at an independent confirmation using a different instrument. Methods. We retrieved archive images from Gemini South obtained with the instrument NICI, which is designed for high contrast imaging. The observations combine coronagraphy and angular differential imaging and were obtained at three epochs in Nov. 2008, Dec. 2009 and Dec. 2010. Results. We report the detection with NICI of the planet {\beta} Pictoris b in Dec. 2010 images at a separation of 404 \pm 10 mas and P A = 212.1 \pm 0.7{\deg} . It is the first time this planet is observed with a telescope different than the VLT.Comment: Letter accepted for publication in Astronomy and Astrophysics on Feb. 21, 2013. 4 pages, 2 figure

    Imaging exoplanets with coronagraphic instruments

    Get PDF

    Analytical model-based analysis of long-exposure images fromground-based telescopes

    Full text link
    The search for Earth-like exoplanets requires high-contrast and high-angular resolution instruments, which designs can be very complex: they need an adaptive optics system to compensate for the effect of the atmospheric turbulence on image quality and a coronagraph to reduce the starlight and enable the companion imaging. During the instrument design phase and the error budget process, studies of performance as a function of optical errors are needed and require multiple end-to-end numerical simulations of wavefront errors through the optical system. In particular, the detailed analysis of long-exposure images enables to evaluate the image quality (photon noise level, impact of optical aberrations and of adaptive optics residuals, etc.). Nowadays simulating one long but finite exposure image means drawing several thousands of random frozen phase screens, simulating the image associated with each of them after propagation through the imaging instrument, and averaging all the images. Such a process is time consuming, demands a great deal of computer resources, and limits the number of parametric optimization. We propose an alternative and innovative method to directly express the statistics of ground-based images for long but finite exposure times. It is based on an analytical model, which only requires the statistical properties of the atmospheric turbulence. Such a method can be applied to optimize the design of future instruments such as SPHERE+ (VLT) or the planetary camera and spectrograph (PCS - ELT) or any ground-based instrument.Comment: 7 pages, 0 figur

    The Fast Atmospheric Self-Coherent Camera Technique: Laboratory Results and Future Directions

    Full text link
    Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes (ELTs). However, wavefront errors will limit the sensitivity of this endeavor. Limitations for ground-based telescopes arise from both quasi-static and residual AO-corrected atmospheric wavefront errors, the latter of which generates short-lived aberrations that will average into a halo over a long exposure. We have developed and tested the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called the Fast Atmospheric SCC Technique (FAST). In this paper we present updates of new and ongoing work for FAST, both in numerical simulation and in the laboratory. We first present numerical simulations that illustrate the scientific potential of FAST, including, with current 10-m telescopes, the direct detection of exoplanets reflected light and exo-Jupiters in thermal emission and, with future ELTs, the detection of habitable exoplanets. In the laboratory, we present the first characterizations of our proposed, and now fabricated, coronagraphic masks.Comment: submitted to Proceedings of Adaptive Optics for Extremely Large Telescopes

    Expected Performance of a Self-Coherent Camera

    Get PDF
    Residual wavefront errors in optical elements limit the performance of coronagraphs. To improve their efficiency, different types of devices have been proposed to correct or calibrate these errors. In this paper, we study one of these techniques proposed by Baudoz et al. 2006 and called Self-Coherent Camera (SCC). The principle of this instrument is based on the lack of coherence between the stellar light and the planet that is searched for. After recalling the principle of the SCC, we simulate its performance under realistic conditions and compare it with the performance of differential imaging.Comment: 6 pages, 4 figure

    SAXO+ upgrade : second stage AO system end-to-end numerical simulations

    Full text link
    SAXO+ is a proposed upgrade to SAXO, the AO system of the SPHERE instrument on the ESO Very Large Telescope. It will improve the capabilities of the instrument for the detection and characterization of young giant planets. It includes a second stage adaptive optics system composed of a dedicated near-infrared wavefront sensor and a deformable mirror. This second stage will remove the residual wavefront errors left by the current primary AO loop (SAXO). This paper focuses on the numerical simulations of the second stage (SAXO+) and concludes on the impact of the main AO parameters used to build the design strategy. Using an end-to-end AO simulation tool (COMPASS), we investigate the impact of several parameters on the performance of the AO system. We measure the performance in minimizing the star residuals in the coronagraphic image. The parameters that we study are : the second stage frequency, the photon flux on each WFS, the first stage gain and the DM number of actuators of the second stage. We show that the performance is improved by a factor 10 with respect to the current AO system (SAXO). The optimal second stage frequency is between 1 and 2 kHz under good observing conditions. In a red star case, the best SAXO+ performance is achieved with a low first stage gain of 0.05, which reduces the first stage rejection.Comment: 10 pages, 8 figures. Submitted to AO4ELT7 conference proceeding
    corecore